![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xpexr2 | Structured version Visualization version GIF version |
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.) |
Ref | Expression |
---|---|
xpexr2 | ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpnz 5663 | . 2 ⊢ ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅) | |
2 | dmxp 5451 | . . . . . 6 ⊢ (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴) | |
3 | 2 | adantl 473 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴) |
4 | dmexg 7214 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V) | |
5 | 4 | adantr 472 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V) |
6 | 3, 5 | eqeltrrd 2804 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐵 ≠ ∅) → 𝐴 ∈ V) |
7 | rnxp 5674 | . . . . . 6 ⊢ (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵) | |
8 | 7 | adantl 473 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵) |
9 | rnexg 7215 | . . . . . 6 ⊢ ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V) | |
10 | 9 | adantr 472 | . . . . 5 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V) |
11 | 8, 10 | eqeltrrd 2804 | . . . 4 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ 𝐴 ≠ ∅) → 𝐵 ∈ V) |
12 | 6, 11 | anim12dan 918 | . . 3 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
13 | 12 | ancom2s 879 | . 2 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
14 | 1, 13 | sylan2br 494 | 1 ⊢ (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 Vcvv 3304 ∅c0 4023 × cxp 5216 dom cdm 5218 ran crn 5219 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 ax-un 7066 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-uni 4545 df-br 4761 df-opab 4821 df-xp 5224 df-rel 5225 df-cnv 5226 df-dm 5228 df-rn 5229 |
This theorem is referenced by: xpfir 8298 bj-xpnzex 33173 |
Copyright terms: Public domain | W3C validator |