MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpexr2 Structured version   Visualization version   GIF version

Theorem xpexr2 7054
Description: If a nonempty Cartesian product is a set, so are both of its components. (Contributed by NM, 27-Aug-2006.)
Assertion
Ref Expression
xpexr2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))

Proof of Theorem xpexr2
StepHypRef Expression
1 xpnz 5512 . 2 ((𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅) ↔ (𝐴 × 𝐵) ≠ ∅)
2 dmxp 5304 . . . . . 6 (𝐵 ≠ ∅ → dom (𝐴 × 𝐵) = 𝐴)
32adantl 482 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) = 𝐴)
4 dmexg 7044 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → dom (𝐴 × 𝐵) ∈ V)
54adantr 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → dom (𝐴 × 𝐵) ∈ V)
63, 5eqeltrrd 2699 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐵 ≠ ∅) → 𝐴 ∈ V)
7 rnxp 5523 . . . . . 6 (𝐴 ≠ ∅ → ran (𝐴 × 𝐵) = 𝐵)
87adantl 482 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) = 𝐵)
9 rnexg 7045 . . . . . 6 ((𝐴 × 𝐵) ∈ 𝐶 → ran (𝐴 × 𝐵) ∈ V)
109adantr 481 . . . . 5 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → ran (𝐴 × 𝐵) ∈ V)
118, 10eqeltrrd 2699 . . . 4 (((𝐴 × 𝐵) ∈ 𝐶𝐴 ≠ ∅) → 𝐵 ∈ V)
126, 11anim12dan 881 . . 3 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐵 ≠ ∅ ∧ 𝐴 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
1312ancom2s 843 . 2 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 ≠ ∅ ∧ 𝐵 ≠ ∅)) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
141, 13sylan2br 493 1 (((𝐴 × 𝐵) ∈ 𝐶 ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ V ∧ 𝐵 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  Vcvv 3186  c0 3891   × cxp 5072  dom cdm 5074  ran crn 5075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-xp 5080  df-rel 5081  df-cnv 5082  df-dm 5084  df-rn 5085
This theorem is referenced by:  xpfir  8126  bj-xpnzex  32590
  Copyright terms: Public domain W3C validator