MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpidtr Structured version   Visualization version   GIF version

Theorem xpidtr 5421
Description: A square Cartesian product (𝐴 × 𝐴) is a transitive relation. (Contributed by FL, 31-Jul-2009.)
Assertion
Ref Expression
xpidtr ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)

Proof of Theorem xpidtr
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brxp 5058 . . . . . 6 (𝑥(𝐴 × 𝐴)𝑦 ↔ (𝑥𝐴𝑦𝐴))
2 brxp 5058 . . . . . . . . 9 (𝑦(𝐴 × 𝐴)𝑧 ↔ (𝑦𝐴𝑧𝐴))
3 brxp 5058 . . . . . . . . . 10 (𝑥(𝐴 × 𝐴)𝑧 ↔ (𝑥𝐴𝑧𝐴))
43simplbi2com 654 . . . . . . . . 9 (𝑧𝐴 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
52, 4simplbiim 656 . . . . . . . 8 (𝑦(𝐴 × 𝐴)𝑧 → (𝑥𝐴𝑥(𝐴 × 𝐴)𝑧))
65com12 32 . . . . . . 7 (𝑥𝐴 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
76adantr 479 . . . . . 6 ((𝑥𝐴𝑦𝐴) → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
81, 7sylbi 205 . . . . 5 (𝑥(𝐴 × 𝐴)𝑦 → (𝑦(𝐴 × 𝐴)𝑧𝑥(𝐴 × 𝐴)𝑧))
98imp 443 . . . 4 ((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
109ax-gen 1712 . . 3 𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
1110gen2 1713 . 2 𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧)
12 cotr 5411 . 2 (((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴) ↔ ∀𝑥𝑦𝑧((𝑥(𝐴 × 𝐴)𝑦𝑦(𝐴 × 𝐴)𝑧) → 𝑥(𝐴 × 𝐴)𝑧))
1311, 12mpbir 219 1 ((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  wal 1472  wcel 1976  wss 3536   class class class wbr 4574   × cxp 5023  ccom 5029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pr 4825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-sn 4122  df-pr 4124  df-op 4128  df-br 4575  df-opab 4635  df-xp 5031  df-rel 5032  df-co 5034
This theorem is referenced by:  trinxp  5424  xpider  7679  trust  21782  rtrclex  36743  rtrclexi  36747
  Copyright terms: Public domain W3C validator