MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xposdif Structured version   Visualization version   GIF version

Theorem xposdif 12051
Description: Extended real version of posdif 10481. (Contributed by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
xposdif ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))

Proof of Theorem xposdif
StepHypRef Expression
1 xnegcl 12003 . . . 4 (𝐵 ∈ ℝ* → -𝑒𝐵 ∈ ℝ*)
2 xaddcl 12029 . . . 4 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
31, 2sylan2 491 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 -𝑒𝐵) ∈ ℝ*)
4 xlt0neg1 12009 . . 3 ((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵)))
53, 4syl 17 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 0 < -𝑒(𝐴 +𝑒 -𝑒𝐵)))
6 xsubge0 12050 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ 𝐵𝐴))
76notbid 308 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵) ↔ ¬ 𝐵𝐴))
8 0xr 10046 . . . 4 0 ∈ ℝ*
9 xrltnle 10065 . . . 4 (((𝐴 +𝑒 -𝑒𝐵) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
103, 8, 9sylancl 693 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ ¬ 0 ≤ (𝐴 +𝑒 -𝑒𝐵)))
11 xrltnle 10065 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ ¬ 𝐵𝐴))
127, 10, 113bitr4d 300 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 +𝑒 -𝑒𝐵) < 0 ↔ 𝐴 < 𝐵))
13 xnegdi 12037 . . . . 5 ((𝐴 ∈ ℝ* ∧ -𝑒𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵))
141, 13sylan2 491 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵))
15 xnegneg 12004 . . . . . 6 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
1615oveq2d 6631 . . . . 5 (𝐵 ∈ ℝ* → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵))
1716adantl 482 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 -𝑒-𝑒𝐵) = (-𝑒𝐴 +𝑒 𝐵))
18 xnegcl 12003 . . . . 5 (𝐴 ∈ ℝ* → -𝑒𝐴 ∈ ℝ*)
19 xaddcom 12030 . . . . 5 ((-𝑒𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2018, 19sylan 488 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (-𝑒𝐴 +𝑒 𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2114, 17, 203eqtrd 2659 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → -𝑒(𝐴 +𝑒 -𝑒𝐵) = (𝐵 +𝑒 -𝑒𝐴))
2221breq2d 4635 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (0 < -𝑒(𝐴 +𝑒 -𝑒𝐵) ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
235, 12, 223bitr3d 298 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 ↔ 0 < (𝐵 +𝑒 -𝑒𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4623  (class class class)co 6615  0cc0 9896  *cxr 10033   < clt 10034  cle 10035  -𝑒cxne 11903   +𝑒 cxad 11904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-po 5005  df-so 5006  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-1st 7128  df-2nd 7129  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-xneg 11906  df-xadd 11907
This theorem is referenced by:  blcld  22250  metdstri  22594
  Copyright terms: Public domain W3C validator