MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpriindi Structured version   Visualization version   GIF version

Theorem xpriindi 5168
Description: Distributive law for Cartesian product over relativized indexed intersection. (Contributed by Mario Carneiro, 21-Mar-2015.)
Assertion
Ref Expression
xpriindi (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝐵(𝑥)   𝐷(𝑥)

Proof of Theorem xpriindi
StepHypRef Expression
1 iineq1 4465 . . . . . . 7 (𝐴 = ∅ → 𝑥𝐴 𝐵 = 𝑥 ∈ ∅ 𝐵)
2 0iin 4508 . . . . . . 7 𝑥 ∈ ∅ 𝐵 = V
31, 2syl6eq 2659 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 𝐵 = V)
43ineq2d 3775 . . . . 5 (𝐴 = ∅ → (𝐷 𝑥𝐴 𝐵) = (𝐷 ∩ V))
5 inv1 3921 . . . . 5 (𝐷 ∩ V) = 𝐷
64, 5syl6eq 2659 . . . 4 (𝐴 = ∅ → (𝐷 𝑥𝐴 𝐵) = 𝐷)
76xpeq2d 5053 . . 3 (𝐴 = ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = (𝐶 × 𝐷))
8 iineq1 4465 . . . . . 6 (𝐴 = ∅ → 𝑥𝐴 (𝐶 × 𝐵) = 𝑥 ∈ ∅ (𝐶 × 𝐵))
9 0iin 4508 . . . . . 6 𝑥 ∈ ∅ (𝐶 × 𝐵) = V
108, 9syl6eq 2659 . . . . 5 (𝐴 = ∅ → 𝑥𝐴 (𝐶 × 𝐵) = V)
1110ineq2d 3775 . . . 4 (𝐴 = ∅ → ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)) = ((𝐶 × 𝐷) ∩ V))
12 inv1 3921 . . . 4 ((𝐶 × 𝐷) ∩ V) = (𝐶 × 𝐷)
1311, 12syl6eq 2659 . . 3 (𝐴 = ∅ → ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)) = (𝐶 × 𝐷))
147, 13eqtr4d 2646 . 2 (𝐴 = ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
15 xpindi 5165 . . 3 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵))
16 xpiindi 5167 . . . 4 (𝐴 ≠ ∅ → (𝐶 × 𝑥𝐴 𝐵) = 𝑥𝐴 (𝐶 × 𝐵))
1716ineq2d 3775 . . 3 (𝐴 ≠ ∅ → ((𝐶 × 𝐷) ∩ (𝐶 × 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
1815, 17syl5eq 2655 . 2 (𝐴 ≠ ∅ → (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵)))
1914, 18pm2.61ine 2864 1 (𝐶 × (𝐷 𝑥𝐴 𝐵)) = ((𝐶 × 𝐷) ∩ 𝑥𝐴 (𝐶 × 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1474  wne 2779  Vcvv 3172  cin 3538  c0 3873   ciin 4450   × cxp 5026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pr 4828
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-sn 4125  df-pr 4127  df-op 4131  df-iin 4452  df-opab 4638  df-xp 5034  df-rel 5035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator