MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsaddlem Structured version   Visualization version   GIF version

Theorem xpsaddlem 16848
Description: Lemma for xpsadd 16849 and xpsmul 16850. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsadd.3 (𝜑𝐴𝑋)
xpsadd.4 (𝜑𝐵𝑌)
xpsadd.5 (𝜑𝐶𝑋)
xpsadd.6 (𝜑𝐷𝑌)
xpsadd.7 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
xpsadd.8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
xpsaddlem.m · = (𝐸𝑅)
xpsaddlem.n × = (𝐸𝑆)
xpsaddlem.p = (𝐸𝑇)
xpsaddlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpsaddlem.u 𝑈 = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
xpsaddlem.1 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran 𝐹 ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran 𝐹) → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
xpsaddlem.2 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘𝑈) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘𝑈)) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
Assertion
Ref Expression
xpsaddlem (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝐵,𝑘,𝑥,𝑦   𝐶,𝑘,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝑆,𝑘   𝑈,𝑘   𝑥,𝑊   𝜑,𝑘   · ,𝑘,𝑥,𝑦   × ,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝑅,𝑘,𝑥   𝑘,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝑇(𝑥,𝑦,𝑘)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem xpsaddlem
StepHypRef Expression
1 df-ov 7161 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 xpsadd.3 . . . . . 6 (𝜑𝐴𝑋)
3 xpsadd.4 . . . . . 6 (𝜑𝐵𝑌)
4 xpsaddlem.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
54xpsfval 16841 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (𝐴𝐹𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
62, 3, 5syl2anc 586 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
71, 6syl5eqr 2872 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩})
82, 3opelxpd 5595 . . . . 5 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
94xpsff1o2 16844 . . . . . . 7 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
10 f1of 6617 . . . . . . 7 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:(𝑋 × 𝑌)⟶ran 𝐹)
119, 10ax-mp 5 . . . . . 6 𝐹:(𝑋 × 𝑌)⟶ran 𝐹
1211ffvelrni 6852 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
138, 12syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
147, 13eqeltrrd 2916 . . 3 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran 𝐹)
15 df-ov 7161 . . . . 5 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
16 xpsadd.5 . . . . . 6 (𝜑𝐶𝑋)
17 xpsadd.6 . . . . . 6 (𝜑𝐷𝑌)
184xpsfval 16841 . . . . . 6 ((𝐶𝑋𝐷𝑌) → (𝐶𝐹𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
1916, 17, 18syl2anc 586 . . . . 5 (𝜑 → (𝐶𝐹𝐷) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2015, 19syl5eqr 2872 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})
2116, 17opelxpd 5595 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2211ffvelrni 6852 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2321, 22syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2420, 23eqeltrrd 2916 . . 3 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran 𝐹)
25 xpsaddlem.1 . . 3 ((𝜑 ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ ran 𝐹 ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ ran 𝐹) → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
2614, 24, 25mpd3an23 1459 . 2 (𝜑 → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})))
27 f1ocnvfv 7037 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
289, 8, 27sylancr 589 . . . 4 (𝜑 → ((𝐹‘⟨𝐴, 𝐵⟩) = {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} → (𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩))
297, 28mpd 15 . . 3 (𝜑 → (𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) = ⟨𝐴, 𝐵⟩)
30 f1ocnvfv 7037 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
319, 21, 30sylancr 589 . . . 4 (𝜑 → ((𝐹‘⟨𝐶, 𝐷⟩) = {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} → (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩))
3220, 31mpd 15 . . 3 (𝜑 → (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = ⟨𝐶, 𝐷⟩)
3329, 32oveq12d 7176 . 2 (𝜑 → ((𝐹‘{⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}) (𝐹‘{⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (⟨𝐴, 𝐵𝐶, 𝐷⟩))
34 iftrue 4475 . . . . . . . . . . . 12 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
3534fveq2d 6676 . . . . . . . . . . 11 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑅))
36 xpsaddlem.m . . . . . . . . . . 11 · = (𝐸𝑅)
3735, 36syl6eqr 2876 . . . . . . . . . 10 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
38 iftrue 4475 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
39 iftrue 4475 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐶)
4037, 38, 39oveq123d 7179 . . . . . . . . 9 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐴 · 𝐶))
41 iftrue 4475 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐴 · 𝐶))
4240, 41eqtr4d 2861 . . . . . . . 8 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
43 iffalse 4478 . . . . . . . . . . . 12 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
4443fveq2d 6676 . . . . . . . . . . 11 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑆))
45 xpsaddlem.n . . . . . . . . . . 11 × = (𝐸𝑆)
4644, 45syl6eqr 2876 . . . . . . . . . 10 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
47 iffalse 4478 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
48 iffalse 4478 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐷)
4946, 47, 48oveq123d 7179 . . . . . . . . 9 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐵 × 𝐷))
50 iffalse 4478 . . . . . . . . 9 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐵 × 𝐷))
5149, 50eqtr4d 2861 . . . . . . . 8 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
5242, 51pm2.61i 184 . . . . . . 7 (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷))
53 xpsval.1 . . . . . . . . . . 11 (𝜑𝑅𝑉)
5453adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑅𝑉)
55 xpsval.2 . . . . . . . . . . 11 (𝜑𝑆𝑊)
5655adantr 483 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑆𝑊)
57 simpr 487 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2o) → 𝑘 ∈ 2o)
58 fvprif 16836 . . . . . . . . . 10 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
5954, 56, 57, 58syl3anc 1367 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
6059fveq2d 6676 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)))
612adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐴𝑋)
623adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐵𝑌)
63 fvprif 16836 . . . . . . . . 9 ((𝐴𝑋𝐵𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
6461, 62, 57, 63syl3anc 1367 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
6516adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐶𝑋)
6617adantr 483 . . . . . . . . 9 ((𝜑𝑘 ∈ 2o) → 𝐷𝑌)
67 fvprif 16836 . . . . . . . . 9 ((𝐶𝑋𝐷𝑌𝑘 ∈ 2o) → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
6865, 66, 57, 67syl3anc 1367 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
6960, 64, 68oveq123d 7179 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) = (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)))
70 xpsadd.7 . . . . . . . . 9 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
7170adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐴 · 𝐶) ∈ 𝑋)
72 xpsadd.8 . . . . . . . . 9 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
7372adantr 483 . . . . . . . 8 ((𝜑𝑘 ∈ 2o) → (𝐵 × 𝐷) ∈ 𝑌)
74 fvprif 16836 . . . . . . . 8 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
7571, 73, 57, 74syl3anc 1367 . . . . . . 7 ((𝜑𝑘 ∈ 2o) → ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
7652, 69, 753eqtr4a 2884 . . . . . 6 ((𝜑𝑘 ∈ 2o) → (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘)) = ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘))
7776mpteq2dva 5163 . . . . 5 (𝜑 → (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))) = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘)))
78 fnpr2o 16832 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
7953, 55, 78syl2anc 586 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
80 xpsval.t . . . . . . . 8 𝑇 = (𝑅 ×s 𝑆)
81 xpsval.x . . . . . . . 8 𝑋 = (Base‘𝑅)
82 xpsval.y . . . . . . . 8 𝑌 = (Base‘𝑆)
83 eqid 2823 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
84 xpsaddlem.u . . . . . . . 8 𝑈 = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
8580, 81, 82, 53, 55, 4, 83, 84xpsrnbas 16846 . . . . . . 7 (𝜑 → ran 𝐹 = (Base‘𝑈))
8614, 85eleqtrd 2917 . . . . . 6 (𝜑 → {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘𝑈))
8724, 85eleqtrd 2917 . . . . . 6 (𝜑 → {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘𝑈))
88 xpsaddlem.2 . . . . . 6 (({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ∧ {⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} ∈ (Base‘𝑈) ∧ {⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩} ∈ (Base‘𝑈)) → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
8979, 86, 87, 88syl3anc 1367 . . . . 5 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = (𝑘 ∈ 2o ↦ (({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩}‘𝑘)(𝐸‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))({⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}‘𝑘))))
90 fnpr2o 16832 . . . . . . 7 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} Fn 2o)
9170, 72, 90syl2anc 586 . . . . . 6 (𝜑 → {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} Fn 2o)
92 dffn5 6726 . . . . . 6 ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} Fn 2o ↔ {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘)))
9391, 92sylib 220 . . . . 5 (𝜑 → {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}‘𝑘)))
9477, 89, 933eqtr4d 2868 . . . 4 (𝜑 → ({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩}) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
9594fveq2d 6676 . . 3 (𝜑 → (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}))
96 df-ov 7161 . . . . 5 ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
974xpsfval 16841 . . . . . 6 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
9870, 72, 97syl2anc 586 . . . . 5 (𝜑 → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
9996, 98syl5eqr 2872 . . . 4 (𝜑 → (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩})
10070, 72opelxpd 5595 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
101 f1ocnvfv 7037 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} → (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
1029, 100, 101sylancr 589 . . . 4 (𝜑 → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = {⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩} → (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
10399, 102mpd 15 . . 3 (𝜑 → (𝐹‘{⟨∅, (𝐴 · 𝐶)⟩, ⟨1o, (𝐵 × 𝐷)⟩}) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10495, 103eqtrd 2858 . 2 (𝜑 → (𝐹‘({⟨∅, 𝐴⟩, ⟨1o, 𝐵⟩} (𝐸𝑈){⟨∅, 𝐶⟩, ⟨1o, 𝐷⟩})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10526, 33, 1043eqtr3d 2866 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  c0 4293  ifcif 4469  {cpr 4571  cop 4575  cmpt 5148   × cxp 5555  ccnv 5556  ran crn 5558   Fn wfn 6352  wf 6353  1-1-ontowf1o 6356  cfv 6357  (class class class)co 7158  cmpo 7160  1oc1o 8097  2oc2o 8098  Basecbs 16485  Scalarcsca 16570  Xscprds 16721   ×s cxps 16781
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-hom 16591  df-cco 16592  df-prds 16723
This theorem is referenced by:  xpsadd  16849  xpsmul  16850
  Copyright terms: Public domain W3C validator