MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsaddlem Structured version   Visualization version   GIF version

Theorem xpsaddlem 16282
Description: Lemma for xpsadd 16283 and xpsmul 16284. (Contributed by Mario Carneiro, 15-Aug-2015.)
Hypotheses
Ref Expression
xpsval.t 𝑇 = (𝑅 ×s 𝑆)
xpsval.x 𝑋 = (Base‘𝑅)
xpsval.y 𝑌 = (Base‘𝑆)
xpsval.1 (𝜑𝑅𝑉)
xpsval.2 (𝜑𝑆𝑊)
xpsadd.3 (𝜑𝐴𝑋)
xpsadd.4 (𝜑𝐵𝑌)
xpsadd.5 (𝜑𝐶𝑋)
xpsadd.6 (𝜑𝐷𝑌)
xpsadd.7 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
xpsadd.8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
xpsaddlem.m · = (𝐸𝑅)
xpsaddlem.n × = (𝐸𝑆)
xpsaddlem.p = (𝐸𝑇)
xpsaddlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
xpsaddlem.u 𝑈 = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
xpsaddlem.1 ((𝜑({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹) → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))))
xpsaddlem.2 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈) ∧ ({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈)) → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
Assertion
Ref Expression
xpsaddlem (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Distinct variable groups:   𝑥,𝑘,𝑦,𝐴   𝐵,𝑘,𝑥,𝑦   𝐶,𝑘,𝑥,𝑦   𝐷,𝑘,𝑥,𝑦   𝑆,𝑘   𝑈,𝑘   𝑥,𝑊   𝜑,𝑘   · ,𝑘,𝑥,𝑦   × ,𝑘,𝑥,𝑦   𝑘,𝑋,𝑥,𝑦   𝑅,𝑘,𝑥   𝑘,𝑌,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑥,𝑦)   (𝑥,𝑦,𝑘)   𝑇(𝑥,𝑦,𝑘)   𝑈(𝑥,𝑦)   𝐸(𝑥,𝑦,𝑘)   𝐹(𝑥,𝑦,𝑘)   𝑉(𝑥,𝑦,𝑘)   𝑊(𝑦,𝑘)

Proof of Theorem xpsaddlem
StepHypRef Expression
1 df-ov 6693 . . . . 5 (𝐴𝐹𝐵) = (𝐹‘⟨𝐴, 𝐵⟩)
2 xpsadd.3 . . . . . 6 (𝜑𝐴𝑋)
3 xpsadd.4 . . . . . 6 (𝜑𝐵𝑌)
4 xpsaddlem.f . . . . . . 7 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
54xpsfval 16274 . . . . . 6 ((𝐴𝑋𝐵𝑌) → (𝐴𝐹𝐵) = ({𝐴} +𝑐 {𝐵}))
62, 3, 5syl2anc 694 . . . . 5 (𝜑 → (𝐴𝐹𝐵) = ({𝐴} +𝑐 {𝐵}))
71, 6syl5eqr 2699 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}))
8 opelxpi 5182 . . . . . 6 ((𝐴𝑋𝐵𝑌) → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
92, 3, 8syl2anc 694 . . . . 5 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌))
104xpsff1o2 16278 . . . . . . 7 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
11 f1of 6175 . . . . . . 7 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:(𝑋 × 𝑌)⟶ran 𝐹)
1210, 11ax-mp 5 . . . . . 6 𝐹:(𝑋 × 𝑌)⟶ran 𝐹
1312ffvelrni 6398 . . . . 5 (⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
149, 13syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐴, 𝐵⟩) ∈ ran 𝐹)
157, 14eqeltrrd 2731 . . 3 (𝜑({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹)
16 df-ov 6693 . . . . 5 (𝐶𝐹𝐷) = (𝐹‘⟨𝐶, 𝐷⟩)
17 xpsadd.5 . . . . . 6 (𝜑𝐶𝑋)
18 xpsadd.6 . . . . . 6 (𝜑𝐷𝑌)
194xpsfval 16274 . . . . . 6 ((𝐶𝑋𝐷𝑌) → (𝐶𝐹𝐷) = ({𝐶} +𝑐 {𝐷}))
2017, 18, 19syl2anc 694 . . . . 5 (𝜑 → (𝐶𝐹𝐷) = ({𝐶} +𝑐 {𝐷}))
2116, 20syl5eqr 2699 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}))
22 opelxpi 5182 . . . . . 6 ((𝐶𝑋𝐷𝑌) → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2317, 18, 22syl2anc 694 . . . . 5 (𝜑 → ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌))
2412ffvelrni 6398 . . . . 5 (⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌) → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2523, 24syl 17 . . . 4 (𝜑 → (𝐹‘⟨𝐶, 𝐷⟩) ∈ ran 𝐹)
2621, 25eqeltrrd 2731 . . 3 (𝜑({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹)
27 xpsaddlem.1 . . 3 ((𝜑({𝐴} +𝑐 {𝐵}) ∈ ran 𝐹({𝐶} +𝑐 {𝐷}) ∈ ran 𝐹) → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))))
2815, 26, 27mpd3an23 1466 . 2 (𝜑 → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))))
29 f1ocnvfv 6574 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐴, 𝐵⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}) → (𝐹({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩))
3010, 9, 29sylancr 696 . . . 4 (𝜑 → ((𝐹‘⟨𝐴, 𝐵⟩) = ({𝐴} +𝑐 {𝐵}) → (𝐹({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩))
317, 30mpd 15 . . 3 (𝜑 → (𝐹({𝐴} +𝑐 {𝐵})) = ⟨𝐴, 𝐵⟩)
32 f1ocnvfv 6574 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨𝐶, 𝐷⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}) → (𝐹({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩))
3310, 23, 32sylancr 696 . . . 4 (𝜑 → ((𝐹‘⟨𝐶, 𝐷⟩) = ({𝐶} +𝑐 {𝐷}) → (𝐹({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩))
3421, 33mpd 15 . . 3 (𝜑 → (𝐹({𝐶} +𝑐 {𝐷})) = ⟨𝐶, 𝐷⟩)
3531, 34oveq12d 6708 . 2 (𝜑 → ((𝐹({𝐴} +𝑐 {𝐵})) (𝐹({𝐶} +𝑐 {𝐷}))) = (⟨𝐴, 𝐵𝐶, 𝐷⟩))
36 xpsval.1 . . . . . . 7 (𝜑𝑅𝑉)
37 xpsval.2 . . . . . . 7 (𝜑𝑆𝑊)
38 xpscfn 16266 . . . . . . 7 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
3936, 37, 38syl2anc 694 . . . . . 6 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
40 xpsval.t . . . . . . . 8 𝑇 = (𝑅 ×s 𝑆)
41 xpsval.x . . . . . . . 8 𝑋 = (Base‘𝑅)
42 xpsval.y . . . . . . . 8 𝑌 = (Base‘𝑆)
43 eqid 2651 . . . . . . . 8 (Scalar‘𝑅) = (Scalar‘𝑅)
44 xpsaddlem.u . . . . . . . 8 𝑈 = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
4540, 41, 42, 36, 37, 4, 43, 44xpslem 16280 . . . . . . 7 (𝜑 → ran 𝐹 = (Base‘𝑈))
4615, 45eleqtrd 2732 . . . . . 6 (𝜑({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈))
4726, 45eleqtrd 2732 . . . . . 6 (𝜑({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈))
48 xpsaddlem.2 . . . . . 6 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝐴} +𝑐 {𝐵}) ∈ (Base‘𝑈) ∧ ({𝐶} +𝑐 {𝐷}) ∈ (Base‘𝑈)) → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
4939, 46, 47, 48syl3anc 1366 . . . . 5 (𝜑 → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
50 xpsadd.7 . . . . . . . 8 (𝜑 → (𝐴 · 𝐶) ∈ 𝑋)
51 xpsadd.8 . . . . . . . 8 (𝜑 → (𝐵 × 𝐷) ∈ 𝑌)
52 xpscfn 16266 . . . . . . . 8 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) Fn 2𝑜)
5350, 51, 52syl2anc 694 . . . . . . 7 (𝜑({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) Fn 2𝑜)
54 dffn5 6280 . . . . . . 7 (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) Fn 2𝑜({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘)))
5553, 54sylib 208 . . . . . 6 (𝜑({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘)))
56 iftrue 4125 . . . . . . . . . . . . 13 (𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑅)
5756fveq2d 6233 . . . . . . . . . . . 12 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑅))
58 xpsaddlem.m . . . . . . . . . . . 12 · = (𝐸𝑅)
5957, 58syl6eqr 2703 . . . . . . . . . . 11 (𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = · )
60 iftrue 4125 . . . . . . . . . . 11 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
61 iftrue 4125 . . . . . . . . . . 11 (𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐶)
6259, 60, 61oveq123d 6711 . . . . . . . . . 10 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐴 · 𝐶))
63 iftrue 4125 . . . . . . . . . 10 (𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐴 · 𝐶))
6462, 63eqtr4d 2688 . . . . . . . . 9 (𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
65 iffalse 4128 . . . . . . . . . . . . 13 𝑘 = ∅ → if(𝑘 = ∅, 𝑅, 𝑆) = 𝑆)
6665fveq2d 6233 . . . . . . . . . . . 12 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = (𝐸𝑆))
67 xpsaddlem.n . . . . . . . . . . . 12 × = (𝐸𝑆)
6866, 67syl6eqr 2703 . . . . . . . . . . 11 𝑘 = ∅ → (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)) = × )
69 iffalse 4128 . . . . . . . . . . 11 𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
70 iffalse 4128 . . . . . . . . . . 11 𝑘 = ∅ → if(𝑘 = ∅, 𝐶, 𝐷) = 𝐷)
7168, 69, 70oveq123d 6711 . . . . . . . . . 10 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = (𝐵 × 𝐷))
72 iffalse 4128 . . . . . . . . . 10 𝑘 = ∅ → if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)) = (𝐵 × 𝐷))
7371, 72eqtr4d 2688 . . . . . . . . 9 𝑘 = ∅ → (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
7464, 73pm2.61i 176 . . . . . . . 8 (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷))
7536adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ 2𝑜) → 𝑅𝑉)
7637adantr 480 . . . . . . . . . . 11 ((𝜑𝑘 ∈ 2𝑜) → 𝑆𝑊)
77 simpr 476 . . . . . . . . . . 11 ((𝜑𝑘 ∈ 2𝑜) → 𝑘 ∈ 2𝑜)
78 xpscfv 16269 . . . . . . . . . . 11 ((𝑅𝑉𝑆𝑊𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
7975, 76, 77, 78syl3anc 1366 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = if(𝑘 = ∅, 𝑅, 𝑆))
8079fveq2d 6233 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (𝐸‘if(𝑘 = ∅, 𝑅, 𝑆)))
812adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐴𝑋)
823adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐵𝑌)
83 xpscfv 16269 . . . . . . . . . 10 ((𝐴𝑋𝐵𝑌𝑘 ∈ 2𝑜) → (({𝐴} +𝑐 {𝐵})‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
8481, 82, 77, 83syl3anc 1366 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (({𝐴} +𝑐 {𝐵})‘𝑘) = if(𝑘 = ∅, 𝐴, 𝐵))
8517adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐶𝑋)
8618adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ 2𝑜) → 𝐷𝑌)
87 xpscfv 16269 . . . . . . . . . 10 ((𝐶𝑋𝐷𝑌𝑘 ∈ 2𝑜) → (({𝐶} +𝑐 {𝐷})‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
8885, 86, 77, 87syl3anc 1366 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (({𝐶} +𝑐 {𝐷})‘𝑘) = if(𝑘 = ∅, 𝐶, 𝐷))
8980, 84, 88oveq123d 6711 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) = (if(𝑘 = ∅, 𝐴, 𝐵)(𝐸‘if(𝑘 = ∅, 𝑅, 𝑆))if(𝑘 = ∅, 𝐶, 𝐷)))
9050adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (𝐴 · 𝐶) ∈ 𝑋)
9151adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ 2𝑜) → (𝐵 × 𝐷) ∈ 𝑌)
92 xpscfv 16269 . . . . . . . . 9 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌𝑘 ∈ 2𝑜) → (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
9390, 91, 77, 92syl3anc 1366 . . . . . . . 8 ((𝜑𝑘 ∈ 2𝑜) → (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘) = if(𝑘 = ∅, (𝐴 · 𝐶), (𝐵 × 𝐷)))
9474, 89, 933eqtr4a 2711 . . . . . . 7 ((𝜑𝑘 ∈ 2𝑜) → ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘)) = (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘))
9594mpteq2dva 4777 . . . . . 6 (𝜑 → (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))) = (𝑘 ∈ 2𝑜 ↦ (({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})‘𝑘)))
9655, 95eqtr4d 2688 . . . . 5 (𝜑({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) = (𝑘 ∈ 2𝑜 ↦ ((({𝐴} +𝑐 {𝐵})‘𝑘)(𝐸‘(({𝑅} +𝑐 {𝑆})‘𝑘))(({𝐶} +𝑐 {𝐷})‘𝑘))))
9749, 96eqtr4d 2688 . . . 4 (𝜑 → (({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷})) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
9897fveq2d 6233 . . 3 (𝜑 → (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))) = (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})))
99 df-ov 6693 . . . . 5 ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
1004xpsfval 16274 . . . . . 6 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
10150, 51, 100syl2anc 694 . . . . 5 (𝜑 → ((𝐴 · 𝐶)𝐹(𝐵 × 𝐷)) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
10299, 101syl5eqr 2699 . . . 4 (𝜑 → (𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}))
103 opelxpi 5182 . . . . . 6 (((𝐴 · 𝐶) ∈ 𝑋 ∧ (𝐵 × 𝐷) ∈ 𝑌) → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
10450, 51, 103syl2anc 694 . . . . 5 (𝜑 → ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌))
105 f1ocnvfv 6574 . . . . 5 ((𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹 ∧ ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩ ∈ (𝑋 × 𝑌)) → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) → (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
10610, 104, 105sylancr 696 . . . 4 (𝜑 → ((𝐹‘⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩) = ({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)}) → (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩))
107102, 106mpd 15 . . 3 (𝜑 → (𝐹({(𝐴 · 𝐶)} +𝑐 {(𝐵 × 𝐷)})) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10898, 107eqtrd 2685 . 2 (𝜑 → (𝐹‘(({𝐴} +𝑐 {𝐵})(𝐸𝑈)({𝐶} +𝑐 {𝐷}))) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
10928, 35, 1083eqtr3d 2693 1 (𝜑 → (⟨𝐴, 𝐵𝐶, 𝐷⟩) = ⟨(𝐴 · 𝐶), (𝐵 × 𝐷)⟩)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  c0 3948  ifcif 4119  {csn 4210  cop 4216  cmpt 4762   × cxp 5141  ccnv 5142  ran crn 5144   Fn wfn 5921  wf 5922  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cmpt2 6692  2𝑜c2o 7599   +𝑐 ccda 9027  Basecbs 15904  Scalarcsca 15991  Xscprds 16153   ×s cxps 16213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-hom 16013  df-cco 16014  df-prds 16155
This theorem is referenced by:  xpsadd  16283  xpsmul  16284
  Copyright terms: Public domain W3C validator