MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsfrnel Structured version   Visualization version   GIF version

Theorem xpsfrnel 16838
Description: Elementhood in the target space of the function 𝐹 appearing in xpsval 16846. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
xpsfrnel (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝐺

Proof of Theorem xpsfrnel
StepHypRef Expression
1 elixp2 8468 . 2 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
2 3ancoma 1094 . . 3 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)))
3 df2o3 8120 . . . . . . . 8 2o = {∅, 1o}
43raleqi 3416 . . . . . . 7 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))
5 0ex 5214 . . . . . . . 8 ∅ ∈ V
6 1oex 8113 . . . . . . . 8 1o ∈ V
7 fveq2 6673 . . . . . . . . 9 (𝑘 = ∅ → (𝐺𝑘) = (𝐺‘∅))
8 iftrue 4476 . . . . . . . . 9 (𝑘 = ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐴)
97, 8eleq12d 2910 . . . . . . . 8 (𝑘 = ∅ → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘∅) ∈ 𝐴))
10 fveq2 6673 . . . . . . . . 9 (𝑘 = 1o → (𝐺𝑘) = (𝐺‘1o))
11 1n0 8122 . . . . . . . . . . 11 1o ≠ ∅
12 neeq1 3081 . . . . . . . . . . 11 (𝑘 = 1o → (𝑘 ≠ ∅ ↔ 1o ≠ ∅))
1311, 12mpbiri 260 . . . . . . . . . 10 (𝑘 = 1o𝑘 ≠ ∅)
14 ifnefalse 4482 . . . . . . . . . 10 (𝑘 ≠ ∅ → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
1513, 14syl 17 . . . . . . . . 9 (𝑘 = 1o → if(𝑘 = ∅, 𝐴, 𝐵) = 𝐵)
1610, 15eleq12d 2910 . . . . . . . 8 (𝑘 = 1o → ((𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺‘1o) ∈ 𝐵))
175, 6, 9, 16ralpr 4639 . . . . . . 7 (∀𝑘 ∈ {∅, 1o} (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
184, 17bitri 277 . . . . . 6 (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
19 2onn 8269 . . . . . . . . . 10 2o ∈ ω
20 nnfi 8714 . . . . . . . . . 10 (2o ∈ ω → 2o ∈ Fin)
2119, 20ax-mp 5 . . . . . . . . 9 2o ∈ Fin
22 fnfi 8799 . . . . . . . . 9 ((𝐺 Fn 2o ∧ 2o ∈ Fin) → 𝐺 ∈ Fin)
2321, 22mpan2 689 . . . . . . . 8 (𝐺 Fn 2o𝐺 ∈ Fin)
2423elexd 3517 . . . . . . 7 (𝐺 Fn 2o𝐺 ∈ V)
2524biantrurd 535 . . . . . 6 (𝐺 Fn 2o → (∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
2618, 25syl5rbbr 288 . . . . 5 (𝐺 Fn 2o → ((𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
2726pm5.32i 577 . . . 4 ((𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
28 3anass 1091 . . . 4 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵))))
29 3anass 1091 . . . 4 ((𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵) ↔ (𝐺 Fn 2o ∧ ((𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵)))
3027, 28, 293bitr4i 305 . . 3 ((𝐺 Fn 2o𝐺 ∈ V ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
312, 30bitri 277 . 2 ((𝐺 ∈ V ∧ 𝐺 Fn 2o ∧ ∀𝑘 ∈ 2o (𝐺𝑘) ∈ if(𝑘 = ∅, 𝐴, 𝐵)) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
321, 31bitri 277 1 (𝐺X𝑘 ∈ 2o if(𝑘 = ∅, 𝐴, 𝐵) ↔ (𝐺 Fn 2o ∧ (𝐺‘∅) ∈ 𝐴 ∧ (𝐺‘1o) ∈ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wne 3019  wral 3141  Vcvv 3497  c0 4294  ifcif 4470  {cpr 4572   Fn wfn 6353  cfv 6358  ωcom 7583  1oc1o 8098  2oc2o 8099  Xcixp 8464  Fincfn 8512
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516
This theorem is referenced by:  xpsfrnel2  16840  xpsff1o  16843
  Copyright terms: Public domain W3C validator