MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Structured version   Visualization version   GIF version

Theorem xpsmet 22986
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsmet.3 (𝜑𝑀 ∈ (Met‘𝑋))
xpsmet.4 (𝜑𝑁 ∈ (Met‘𝑌))
Assertion
Ref Expression
xpsmet (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))

Proof of Theorem xpsmet
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . 3 𝑋 = (Base‘𝑅)
3 xpsds.y . . 3 𝑌 = (Base‘𝑆)
4 xpsds.1 . . 3 (𝜑𝑅𝑉)
5 xpsds.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2821 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2821 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2821 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 16837 . 2 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 16838 . 2 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 16836 . . 3 (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
12 f1ocnv 6621 . . 3 ((𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . 2 (𝜑(𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→(𝑋 × 𝑌))
14 ovexd 7185 . 2 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ V)
15 eqid 2821 . 2 ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) = ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
16 xpsds.p . 2 𝑃 = (dist‘𝑇)
17 eqid 2821 . . . . 5 ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
18 eqid 2821 . . . . 5 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
19 eqid 2821 . . . . 5 (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))
20 eqid 2821 . . . . 5 ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
21 eqid 2821 . . . . 5 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
22 fvexd 6679 . . . . 5 (𝜑 → (Scalar‘𝑅) ∈ V)
23 2onn 8260 . . . . . 6 2o ∈ ω
24 nnfi 8705 . . . . . 6 (2o ∈ ω → 2o ∈ Fin)
2523, 24mp1i 13 . . . . 5 (𝜑 → 2o ∈ Fin)
26 fvexd 6679 . . . . 5 ((𝜑𝑘 ∈ 2o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) ∈ V)
27 elpri 4582 . . . . . . 7 (𝑘 ∈ {∅, 1o} → (𝑘 = ∅ ∨ 𝑘 = 1o))
28 df2o3 8111 . . . . . . 7 2o = {∅, 1o}
2927, 28eleq2s 2931 . . . . . 6 (𝑘 ∈ 2o → (𝑘 = ∅ ∨ 𝑘 = 1o))
30 xpsmet.3 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
3130adantr 483 . . . . . . . 8 ((𝜑𝑘 = ∅) → 𝑀 ∈ (Met‘𝑋))
32 fveq2 6664 . . . . . . . . . . . 12 (𝑘 = ∅ → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅))
33 fvpr0o 16826 . . . . . . . . . . . . 13 (𝑅𝑉 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
344, 33syl 17 . . . . . . . . . . . 12 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘∅) = 𝑅)
3532, 34sylan9eqr 2878 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑅)
3635fveq2d 6668 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑅))
3735fveq2d 6668 . . . . . . . . . . . 12 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑅))
3837, 2syl6eqr 2874 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑋)
3938sqxpeqd 5581 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑋 × 𝑋))
4036, 39reseq12d 5848 . . . . . . . . 9 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
41 xpsds.m . . . . . . . . 9 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
4240, 41syl6eqr 2874 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑀)
4338fveq2d 6668 . . . . . . . 8 ((𝜑𝑘 = ∅) → (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (Met‘𝑋))
4431, 42, 433eltr4d 2928 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
45 xpsmet.4 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑌))
4645adantr 483 . . . . . . . 8 ((𝜑𝑘 = 1o) → 𝑁 ∈ (Met‘𝑌))
47 fveq2 6664 . . . . . . . . . . . 12 (𝑘 = 1o → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o))
48 fvpr1o 16827 . . . . . . . . . . . . 13 (𝑆𝑊 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
495, 48syl 17 . . . . . . . . . . . 12 (𝜑 → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘1o) = 𝑆)
5047, 49sylan9eqr 2878 . . . . . . . . . . 11 ((𝜑𝑘 = 1o) → ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘) = 𝑆)
5150fveq2d 6668 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → (dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (dist‘𝑆))
5250fveq2d 6668 . . . . . . . . . . . 12 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = (Base‘𝑆))
5352, 3syl6eqr 2874 . . . . . . . . . . 11 ((𝜑𝑘 = 1o) → (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) = 𝑌)
5453sqxpeqd 5581 . . . . . . . . . 10 ((𝜑𝑘 = 1o) → ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (𝑌 × 𝑌))
5551, 54reseq12d 5848 . . . . . . . . 9 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
56 xpsds.n . . . . . . . . 9 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
5755, 56syl6eqr 2874 . . . . . . . 8 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) = 𝑁)
5853fveq2d 6668 . . . . . . . 8 ((𝜑𝑘 = 1o) → (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))) = (Met‘𝑌))
5946, 57, 583eltr4d 2928 . . . . . . 7 ((𝜑𝑘 = 1o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6044, 59jaodan 954 . . . . . 6 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1o)) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6129, 60sylan2 594 . . . . 5 ((𝜑𝑘 ∈ 2o) → ((dist‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) ↾ ((Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)) × (Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6217, 18, 19, 20, 21, 22, 25, 26, 61prdsmet 22974 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))) ∈ (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
63 fnpr2o 16824 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
644, 5, 63syl2anc 586 . . . . . . 7 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o)
65 dffn5 6718 . . . . . . 7 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} Fn 2o ↔ {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
6664, 65sylib 220 . . . . . 6 (𝜑 → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩} = (𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))
6766oveq2d 7166 . . . . 5 (𝜑 → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))
6867fveq2d 6668 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
6967fveq2d 6668 . . . . . 6 (𝜑 → (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
7010, 69eqtrd 2856 . . . . 5 (𝜑 → ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘)))))
7170fveq2d 6668 . . . 4 (𝜑 → (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) = (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2o ↦ ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}‘𝑘))))))
7262, 68, 713eltr4d 2928 . . 3 (𝜑 → (dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
73 ssid 3988 . . 3 ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
74 metres2 22967 . . 3 (((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) ∧ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) ⊆ ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})) → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
7572, 73, 74sylancl 588 . 2 (𝜑 → ((dist‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})) ↾ (ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) × ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})))
769, 10, 13, 14, 15, 16, 75imasf1omet 22980 1 (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wo 843   = wceq 1533  wcel 2110  Vcvv 3494  wss 3935  c0 4290  {cpr 4562  cop 4566  cmpt 5138   × cxp 5547  ccnv 5548  ran crn 5550  cres 5551   Fn wfn 6344  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  cmpo 7152  ωcom 7574  1oc1o 8089  2oc2o 8090  Fincfn 8503  Basecbs 16477  Scalarcsca 16562  distcds 16568  Xscprds 16713   ×s cxps 16773  Metcmet 20525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-rp 12384  df-xneg 12501  df-xadd 12502  df-xmul 12503  df-icc 12739  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-hom 16583  df-cco 16584  df-0g 16709  df-gsum 16710  df-prds 16715  df-xrs 16769  df-imas 16775  df-xps 16777  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-submnd 17951  df-mulg 18219  df-cntz 18441  df-cmn 18902  df-xmet 20532  df-met 20533
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator