MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsmet Structured version   Visualization version   GIF version

Theorem xpsmet 22127
Description: The direct product of two metric spaces. Definition 14-1.5 of [Gleason] p. 225. (Contributed by NM, 20-Jun-2007.) (Revised by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsmet.3 (𝜑𝑀 ∈ (Met‘𝑋))
xpsmet.4 (𝜑𝑁 ∈ (Met‘𝑌))
Assertion
Ref Expression
xpsmet (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))

Proof of Theorem xpsmet
Dummy variables 𝑥 𝑘 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsds.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 xpsds.x . . 3 𝑋 = (Base‘𝑅)
3 xpsds.y . . 3 𝑌 = (Base‘𝑆)
4 xpsds.1 . . 3 (𝜑𝑅𝑉)
5 xpsds.2 . . 3 (𝜑𝑆𝑊)
6 eqid 2621 . . 3 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
7 eqid 2621 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2621 . . 3 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
91, 2, 3, 4, 5, 6, 7, 8xpsval 16172 . 2 (𝜑𝑇 = ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) “s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
101, 2, 3, 4, 5, 6, 7, 8xpslem 16173 . 2 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
116xpsff1o2 16171 . . 3 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
12 f1ocnv 6116 . . 3 ((𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):(𝑋 × 𝑌)–1-1-onto→ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) → (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
1311, 12mp1i 13 . 2 (𝜑(𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})):ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))–1-1-onto→(𝑋 × 𝑌))
14 ovexd 6645 . 2 (𝜑 → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ V)
15 eqid 2621 . 2 ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) = ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
16 xpsds.p . 2 𝑃 = (dist‘𝑇)
17 eqid 2621 . . . . 5 ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
18 eqid 2621 . . . . 5 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
19 eqid 2621 . . . . 5 (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))
20 eqid 2621 . . . . 5 ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
21 eqid 2621 . . . . 5 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
22 fvexd 6170 . . . . 5 (𝜑 → (Scalar‘𝑅) ∈ V)
23 2onn 7680 . . . . . 6 2𝑜 ∈ ω
24 nnfi 8113 . . . . . 6 (2𝑜 ∈ ω → 2𝑜 ∈ Fin)
2523, 24mp1i 13 . . . . 5 (𝜑 → 2𝑜 ∈ Fin)
26 fvexd 6170 . . . . 5 ((𝜑𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) ∈ V)
27 elpri 4175 . . . . . . 7 (𝑘 ∈ {∅, 1𝑜} → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
28 df2o3 7533 . . . . . . 7 2𝑜 = {∅, 1𝑜}
2927, 28eleq2s 2716 . . . . . 6 (𝑘 ∈ 2𝑜 → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
30 xpsmet.3 . . . . . . . . 9 (𝜑𝑀 ∈ (Met‘𝑋))
3130adantr 481 . . . . . . . 8 ((𝜑𝑘 = ∅) → 𝑀 ∈ (Met‘𝑋))
32 fveq2 6158 . . . . . . . . . . . 12 (𝑘 = ∅ → (({𝑅} +𝑐 {𝑆})‘𝑘) = (({𝑅} +𝑐 {𝑆})‘∅))
33 xpsc0 16160 . . . . . . . . . . . . 13 (𝑅𝑉 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
344, 33syl 17 . . . . . . . . . . . 12 (𝜑 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
3532, 34sylan9eqr 2677 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → (({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑅)
3635fveq2d 6162 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑅))
3735fveq2d 6162 . . . . . . . . . . . 12 ((𝜑𝑘 = ∅) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑅))
3837, 2syl6eqr 2673 . . . . . . . . . . 11 ((𝜑𝑘 = ∅) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑋)
3938sqxpeqd 5111 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑋 × 𝑋))
4036, 39reseq12d 5367 . . . . . . . . 9 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
41 xpsds.m . . . . . . . . 9 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
4240, 41syl6eqr 2673 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑀)
4338fveq2d 6162 . . . . . . . 8 ((𝜑𝑘 = ∅) → (Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (Met‘𝑋))
4431, 42, 433eltr4d 2713 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
45 xpsmet.4 . . . . . . . . 9 (𝜑𝑁 ∈ (Met‘𝑌))
4645adantr 481 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → 𝑁 ∈ (Met‘𝑌))
47 fveq2 6158 . . . . . . . . . . . 12 (𝑘 = 1𝑜 → (({𝑅} +𝑐 {𝑆})‘𝑘) = (({𝑅} +𝑐 {𝑆})‘1𝑜))
48 xpsc1 16161 . . . . . . . . . . . . 13 (𝑆𝑊 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
495, 48syl 17 . . . . . . . . . . . 12 (𝜑 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
5047, 49sylan9eqr 2677 . . . . . . . . . . 11 ((𝜑𝑘 = 1𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑆)
5150fveq2d 6162 . . . . . . . . . 10 ((𝜑𝑘 = 1𝑜) → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑆))
5250fveq2d 6162 . . . . . . . . . . . 12 ((𝜑𝑘 = 1𝑜) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑆))
5352, 3syl6eqr 2673 . . . . . . . . . . 11 ((𝜑𝑘 = 1𝑜) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑌)
5453sqxpeqd 5111 . . . . . . . . . 10 ((𝜑𝑘 = 1𝑜) → ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑌 × 𝑌))
5551, 54reseq12d 5367 . . . . . . . . 9 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
56 xpsds.n . . . . . . . . 9 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
5755, 56syl6eqr 2673 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑁)
5853fveq2d 6162 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → (Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (Met‘𝑌))
5946, 57, 583eltr4d 2713 . . . . . . 7 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
6044, 59jaodan 825 . . . . . 6 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1𝑜)) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
6129, 60sylan2 491 . . . . 5 ((𝜑𝑘 ∈ 2𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
6217, 18, 19, 20, 21, 22, 25, 26, 61prdsmet 22115 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))))
63 xpscfn 16159 . . . . . . . 8 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
644, 5, 63syl2anc 692 . . . . . . 7 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
65 dffn5 6208 . . . . . . 7 (({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
6664, 65sylib 208 . . . . . 6 (𝜑({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
6766oveq2d 6631 . . . . 5 (𝜑 → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
6867fveq2d 6162 . . . 4 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
6967fveq2d 6162 . . . . . 6 (𝜑 → (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
7010, 69eqtrd 2655 . . . . 5 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
7170fveq2d 6162 . . . 4 (𝜑 → (Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) = (Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))))
7262, 68, 713eltr4d 2713 . . 3 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
73 ssid 3609 . . 3 ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
74 metres2 22108 . . 3 (((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) ∧ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) ⊆ ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) → ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
7572, 73, 74sylancl 693 . 2 (𝜑 → ((dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ↾ (ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) × ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})))) ∈ (Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
769, 10, 13, 14, 15, 16, 75imasf1omet 22121 1 (𝜑𝑃 ∈ (Met‘(𝑋 × 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  Vcvv 3190  wss 3560  c0 3897  {csn 4155  {cpr 4157  cmpt 4683   × cxp 5082  ccnv 5083  ran crn 5085  cres 5086   Fn wfn 5852  1-1-ontowf1o 5856  cfv 5857  (class class class)co 6615  cmpt2 6617  ωcom 7027  1𝑜c1o 7513  2𝑜c2o 7514  Fincfn 7915   +𝑐 ccda 8949  Basecbs 15800  Scalarcsca 15884  distcds 15890  Xscprds 16046   ×s cxps 16106  Metcme 19672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-of 6862  df-om 7028  df-1st 7128  df-2nd 7129  df-supp 7256  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-fsupp 8236  df-sup 8308  df-inf 8309  df-oi 8375  df-card 8725  df-cda 8950  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-rp 11793  df-xneg 11906  df-xadd 11907  df-xmul 11908  df-icc 12140  df-fz 12285  df-fzo 12423  df-seq 12758  df-hash 13074  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-hom 15906  df-cco 15907  df-0g 16042  df-gsum 16043  df-prds 16048  df-xrs 16102  df-imas 16108  df-xps 16110  df-mre 16186  df-mrc 16187  df-acs 16189  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-submnd 17276  df-mulg 17481  df-cntz 17690  df-cmn 18135  df-xmet 19679  df-met 19680
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator