MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsnen Structured version   Visualization version   GIF version

Theorem xpsnen 8589
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpsnen.1 𝐴 ∈ V
xpsnen.2 𝐵 ∈ V
Assertion
Ref Expression
xpsnen (𝐴 × {𝐵}) ≈ 𝐴

Proof of Theorem xpsnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsnen.1 . . 3 𝐴 ∈ V
2 snex 5322 . . 3 {𝐵} ∈ V
31, 2xpex 7465 . 2 (𝐴 × {𝐵}) ∈ V
4 elxp 5571 . . 3 (𝑦 ∈ (𝐴 × {𝐵}) ↔ ∃𝑥𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})))
5 inteq 4870 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑥, 𝑧⟩)
65inteqd 4872 . . . . . . 7 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑥, 𝑧⟩)
7 vex 3495 . . . . . . . 8 𝑥 ∈ V
8 vex 3495 . . . . . . . 8 𝑧 ∈ V
97, 8op1stb 5354 . . . . . . 7 𝑥, 𝑧⟩ = 𝑥
106, 9syl6eq 2869 . . . . . 6 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑥)
1110, 7syl6eqel 2918 . . . . 5 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 ∈ V)
1211adantr 481 . . . 4 ((𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) → 𝑦 ∈ V)
1312exlimivv 1924 . . 3 (∃𝑥𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) → 𝑦 ∈ V)
144, 13sylbi 218 . 2 (𝑦 ∈ (𝐴 × {𝐵}) → 𝑦 ∈ V)
15 opex 5347 . . 3 𝑥, 𝐵⟩ ∈ V
1615a1i 11 . 2 (𝑥𝐴 → ⟨𝑥, 𝐵⟩ ∈ V)
17 eqvisset 3509 . . . . 5 (𝑥 = 𝑦 𝑦 ∈ V)
18 ancom 461 . . . . . . . . . . 11 (((𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴) ∧ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ {𝐵} ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
19 anass 469 . . . . . . . . . . 11 (((𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴) ∧ 𝑧 ∈ {𝐵}) ↔ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})))
20 velsn 4573 . . . . . . . . . . . 12 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2120anbi1i 623 . . . . . . . . . . 11 ((𝑧 ∈ {𝐵} ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)) ↔ (𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
2218, 19, 213bitr3i 302 . . . . . . . . . 10 ((𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ (𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
2322exbii 1839 . . . . . . . . 9 (∃𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ ∃𝑧(𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
24 xpsnen.2 . . . . . . . . . 10 𝐵 ∈ V
25 opeq2 4796 . . . . . . . . . . . 12 (𝑧 = 𝐵 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝐵⟩)
2625eqeq2d 2829 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝑦 = ⟨𝑥, 𝑧⟩ ↔ 𝑦 = ⟨𝑥, 𝐵⟩))
2726anbi1d 629 . . . . . . . . . 10 (𝑧 = 𝐵 → ((𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴) ↔ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
2824, 27ceqsexv 3539 . . . . . . . . 9 (∃𝑧(𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)) ↔ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴))
29 inteq 4870 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑥, 𝐵⟩ → 𝑦 = 𝑥, 𝐵⟩)
3029inteqd 4872 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑥, 𝐵⟩ → 𝑦 = 𝑥, 𝐵⟩)
317, 24op1stb 5354 . . . . . . . . . . . . 13 𝑥, 𝐵⟩ = 𝑥
3230, 31syl6req 2870 . . . . . . . . . . . 12 (𝑦 = ⟨𝑥, 𝐵⟩ → 𝑥 = 𝑦)
3332pm4.71ri 561 . . . . . . . . . . 11 (𝑦 = ⟨𝑥, 𝐵⟩ ↔ (𝑥 = 𝑦𝑦 = ⟨𝑥, 𝐵⟩))
3433anbi1i 623 . . . . . . . . . 10 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ ((𝑥 = 𝑦𝑦 = ⟨𝑥, 𝐵⟩) ∧ 𝑥𝐴))
35 anass 469 . . . . . . . . . 10 (((𝑥 = 𝑦𝑦 = ⟨𝑥, 𝐵⟩) ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
3634, 35bitri 276 . . . . . . . . 9 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
3723, 28, 363bitri 298 . . . . . . . 8 (∃𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ (𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
3837exbii 1839 . . . . . . 7 (∃𝑥𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
394, 38bitri 276 . . . . . 6 (𝑦 ∈ (𝐴 × {𝐵}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
40 opeq1 4795 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝐵⟩ = ⟨ 𝑦, 𝐵⟩)
4140eqeq2d 2829 . . . . . . . 8 (𝑥 = 𝑦 → (𝑦 = ⟨𝑥, 𝐵⟩ ↔ 𝑦 = ⟨ 𝑦, 𝐵⟩))
42 eleq1 2897 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴 𝑦𝐴))
4341, 42anbi12d 630 . . . . . . 7 (𝑥 = 𝑦 → ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4443ceqsexgv 3644 . . . . . 6 ( 𝑦 ∈ V → (∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4539, 44syl5bb 284 . . . . 5 ( 𝑦 ∈ V → (𝑦 ∈ (𝐴 × {𝐵}) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4617, 45syl 17 . . . 4 (𝑥 = 𝑦 → (𝑦 ∈ (𝐴 × {𝐵}) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4746pm5.32ri 576 . . 3 ((𝑦 ∈ (𝐴 × {𝐵}) ∧ 𝑥 = 𝑦) ↔ ((𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴) ∧ 𝑥 = 𝑦))
4832adantr 481 . . . . 5 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) → 𝑥 = 𝑦)
4948pm4.71i 560 . . . 4 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ∧ 𝑥 = 𝑦))
5043pm5.32ri 576 . . . 4 (((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ∧ 𝑥 = 𝑦) ↔ ((𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴) ∧ 𝑥 = 𝑦))
5149, 50bitr2i 277 . . 3 (((𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴) ∧ 𝑥 = 𝑦) ↔ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴))
52 ancom 461 . . 3 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ (𝑥𝐴𝑦 = ⟨𝑥, 𝐵⟩))
5347, 51, 523bitri 298 . 2 ((𝑦 ∈ (𝐴 × {𝐵}) ∧ 𝑥 = 𝑦) ↔ (𝑥𝐴𝑦 = ⟨𝑥, 𝐵⟩))
543, 1, 14, 16, 53en2i 8535 1 (𝐴 × {𝐵}) ≈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 207  wa 396   = wceq 1528  wex 1771  wcel 2105  Vcvv 3492  {csn 4557  cop 4563   cint 4867   class class class wbr 5057   × cxp 5546  cen 8494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ral 3140  df-rex 3141  df-rab 3144  df-v 3494  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-int 4868  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-en 8498
This theorem is referenced by:  xpsneng  8590  endisj  8592  infxpenlem  9427  hashxplem  13782  rexpen  15569  heiborlem3  34972
  Copyright terms: Public domain W3C validator