MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsnen Structured version   Visualization version   GIF version

Theorem xpsnen 8211
Description: A set is equinumerous to its Cartesian product with a singleton. Proposition 4.22(c) of [Mendelson] p. 254. (Contributed by NM, 4-Jan-2004.) (Revised by Mario Carneiro, 15-Nov-2014.)
Hypotheses
Ref Expression
xpsnen.1 𝐴 ∈ V
xpsnen.2 𝐵 ∈ V
Assertion
Ref Expression
xpsnen (𝐴 × {𝐵}) ≈ 𝐴

Proof of Theorem xpsnen
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpsnen.1 . . 3 𝐴 ∈ V
2 snex 5057 . . 3 {𝐵} ∈ V
31, 2xpex 7128 . 2 (𝐴 × {𝐵}) ∈ V
4 elxp 5288 . . 3 (𝑦 ∈ (𝐴 × {𝐵}) ↔ ∃𝑥𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})))
5 inteq 4630 . . . . . . . 8 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑥, 𝑧⟩)
65inteqd 4632 . . . . . . 7 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑥, 𝑧⟩)
7 vex 3343 . . . . . . . 8 𝑥 ∈ V
8 vex 3343 . . . . . . . 8 𝑧 ∈ V
97, 8op1stb 5088 . . . . . . 7 𝑥, 𝑧⟩ = 𝑥
106, 9syl6eq 2810 . . . . . 6 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 = 𝑥)
1110, 7syl6eqel 2847 . . . . 5 (𝑦 = ⟨𝑥, 𝑧⟩ → 𝑦 ∈ V)
1211adantr 472 . . . 4 ((𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) → 𝑦 ∈ V)
1312exlimivv 2009 . . 3 (∃𝑥𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) → 𝑦 ∈ V)
144, 13sylbi 207 . 2 (𝑦 ∈ (𝐴 × {𝐵}) → 𝑦 ∈ V)
15 opex 5081 . . 3 𝑥, 𝐵⟩ ∈ V
1615a1i 11 . 2 (𝑥𝐴 → ⟨𝑥, 𝐵⟩ ∈ V)
17 eqvisset 3351 . . . . 5 (𝑥 = 𝑦 𝑦 ∈ V)
18 ancom 465 . . . . . . . . . . 11 (((𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴) ∧ 𝑧 ∈ {𝐵}) ↔ (𝑧 ∈ {𝐵} ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
19 anass 684 . . . . . . . . . . 11 (((𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴) ∧ 𝑧 ∈ {𝐵}) ↔ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})))
20 velsn 4337 . . . . . . . . . . . 12 (𝑧 ∈ {𝐵} ↔ 𝑧 = 𝐵)
2120anbi1i 733 . . . . . . . . . . 11 ((𝑧 ∈ {𝐵} ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)) ↔ (𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
2218, 19, 213bitr3i 290 . . . . . . . . . 10 ((𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ (𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
2322exbii 1923 . . . . . . . . 9 (∃𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ ∃𝑧(𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)))
24 xpsnen.2 . . . . . . . . . 10 𝐵 ∈ V
25 opeq2 4554 . . . . . . . . . . . 12 (𝑧 = 𝐵 → ⟨𝑥, 𝑧⟩ = ⟨𝑥, 𝐵⟩)
2625eqeq2d 2770 . . . . . . . . . . 11 (𝑧 = 𝐵 → (𝑦 = ⟨𝑥, 𝑧⟩ ↔ 𝑦 = ⟨𝑥, 𝐵⟩))
2726anbi1d 743 . . . . . . . . . 10 (𝑧 = 𝐵 → ((𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴) ↔ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
2824, 27ceqsexv 3382 . . . . . . . . 9 (∃𝑧(𝑧 = 𝐵 ∧ (𝑦 = ⟨𝑥, 𝑧⟩ ∧ 𝑥𝐴)) ↔ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴))
29 inteq 4630 . . . . . . . . . . . . . 14 (𝑦 = ⟨𝑥, 𝐵⟩ → 𝑦 = 𝑥, 𝐵⟩)
3029inteqd 4632 . . . . . . . . . . . . 13 (𝑦 = ⟨𝑥, 𝐵⟩ → 𝑦 = 𝑥, 𝐵⟩)
317, 24op1stb 5088 . . . . . . . . . . . . 13 𝑥, 𝐵⟩ = 𝑥
3230, 31syl6req 2811 . . . . . . . . . . . 12 (𝑦 = ⟨𝑥, 𝐵⟩ → 𝑥 = 𝑦)
3332pm4.71ri 668 . . . . . . . . . . 11 (𝑦 = ⟨𝑥, 𝐵⟩ ↔ (𝑥 = 𝑦𝑦 = ⟨𝑥, 𝐵⟩))
3433anbi1i 733 . . . . . . . . . 10 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ ((𝑥 = 𝑦𝑦 = ⟨𝑥, 𝐵⟩) ∧ 𝑥𝐴))
35 anass 684 . . . . . . . . . 10 (((𝑥 = 𝑦𝑦 = ⟨𝑥, 𝐵⟩) ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
3634, 35bitri 264 . . . . . . . . 9 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ (𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
3723, 28, 363bitri 286 . . . . . . . 8 (∃𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ (𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
3837exbii 1923 . . . . . . 7 (∃𝑥𝑧(𝑦 = ⟨𝑥, 𝑧⟩ ∧ (𝑥𝐴𝑧 ∈ {𝐵})) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
394, 38bitri 264 . . . . . 6 (𝑦 ∈ (𝐴 × {𝐵}) ↔ ∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)))
40 opeq1 4553 . . . . . . . . 9 (𝑥 = 𝑦 → ⟨𝑥, 𝐵⟩ = ⟨ 𝑦, 𝐵⟩)
4140eqeq2d 2770 . . . . . . . 8 (𝑥 = 𝑦 → (𝑦 = ⟨𝑥, 𝐵⟩ ↔ 𝑦 = ⟨ 𝑦, 𝐵⟩))
42 eleq1 2827 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴 𝑦𝐴))
4341, 42anbi12d 749 . . . . . . 7 (𝑥 = 𝑦 → ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4443ceqsexgv 3474 . . . . . 6 ( 𝑦 ∈ V → (∃𝑥(𝑥 = 𝑦 ∧ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴)) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4539, 44syl5bb 272 . . . . 5 ( 𝑦 ∈ V → (𝑦 ∈ (𝐴 × {𝐵}) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4617, 45syl 17 . . . 4 (𝑥 = 𝑦 → (𝑦 ∈ (𝐴 × {𝐵}) ↔ (𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴)))
4746pm5.32ri 673 . . 3 ((𝑦 ∈ (𝐴 × {𝐵}) ∧ 𝑥 = 𝑦) ↔ ((𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴) ∧ 𝑥 = 𝑦))
4832adantr 472 . . . . 5 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) → 𝑥 = 𝑦)
4948pm4.71i 667 . . . 4 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ∧ 𝑥 = 𝑦))
5043pm5.32ri 673 . . . 4 (((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ∧ 𝑥 = 𝑦) ↔ ((𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴) ∧ 𝑥 = 𝑦))
5149, 50bitr2i 265 . . 3 (((𝑦 = ⟨ 𝑦, 𝐵⟩ ∧ 𝑦𝐴) ∧ 𝑥 = 𝑦) ↔ (𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴))
52 ancom 465 . . 3 ((𝑦 = ⟨𝑥, 𝐵⟩ ∧ 𝑥𝐴) ↔ (𝑥𝐴𝑦 = ⟨𝑥, 𝐵⟩))
5347, 51, 523bitri 286 . 2 ((𝑦 ∈ (𝐴 × {𝐵}) ∧ 𝑥 = 𝑦) ↔ (𝑥𝐴𝑦 = ⟨𝑥, 𝐵⟩))
543, 1, 14, 16, 53en2i 8161 1 (𝐴 × {𝐵}) ≈ 𝐴
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2139  Vcvv 3340  {csn 4321  cop 4327   cint 4627   class class class wbr 4804   × cxp 5264  cen 8120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-en 8124
This theorem is referenced by:  xpsneng  8212  endisj  8214  infxpenlem  9046  pm110.643  9211  hashxplem  13432  rexpen  15176  heiborlem3  33943
  Copyright terms: Public domain W3C validator