MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem1 Structured version   Visualization version   GIF version

Theorem xpstopnlem1 22419
Description: The function 𝐹 used in xpsval 16845 is a homeomorphism from the binary product topology to the indexed product topology. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
xpstopnlem1.f 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
xpstopnlem1.j (𝜑𝐽 ∈ (TopOn‘𝑋))
xpstopnlem1.k (𝜑𝐾 ∈ (TopOn‘𝑌))
Assertion
Ref Expression
xpstopnlem1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝜑,𝑥,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xpstopnlem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 xpstopnlem1.j . . . . . . . . . 10 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 xpstopnlem1.k . . . . . . . . . 10 (𝜑𝐾 ∈ (TopOn‘𝑌))
3 txtopon 22201 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
41, 2, 3syl2anc 586 . . . . . . . . 9 (𝜑 → (𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)))
5 eqid 2823 . . . . . . . . . . . . 13 (∏t‘{⟨∅, 𝐽⟩}) = (∏t‘{⟨∅, 𝐽⟩})
6 0ex 5213 . . . . . . . . . . . . . 14 ∅ ∈ V
76a1i 11 . . . . . . . . . . . . 13 (𝜑 → ∅ ∈ V)
85, 7, 1pt1hmeo 22416 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})))
9 hmeocn 22370 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽Homeo(∏t‘{⟨∅, 𝐽⟩})) → (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})))
10 cntop2 21851 . . . . . . . . . . . 12 ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) ∈ (𝐽 Cn (∏t‘{⟨∅, 𝐽⟩})) → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
118, 9, 103syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ Top)
12 toptopon2 21528 . . . . . . . . . . 11 ((∏t‘{⟨∅, 𝐽⟩}) ∈ Top ↔ (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
1311, 12sylib 220 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})))
14 eqid 2823 . . . . . . . . . . . . 13 (∏t‘{⟨1o, 𝐾⟩}) = (∏t‘{⟨1o, 𝐾⟩})
15 1on 8111 . . . . . . . . . . . . . 14 1o ∈ On
1615a1i 11 . . . . . . . . . . . . 13 (𝜑 → 1o ∈ On)
1714, 16, 2pt1hmeo 22416 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})))
18 hmeocn 22370 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾Homeo(∏t‘{⟨1o, 𝐾⟩})) → (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})))
19 cntop2 21851 . . . . . . . . . . . 12 ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) ∈ (𝐾 Cn (∏t‘{⟨1o, 𝐾⟩})) → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
2017, 18, 193syl 18 . . . . . . . . . . 11 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ Top)
21 toptopon2 21528 . . . . . . . . . . 11 ((∏t‘{⟨1o, 𝐾⟩}) ∈ Top ↔ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
2220, 21sylib 220 . . . . . . . . . 10 (𝜑 → (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩})))
23 txtopon 22201 . . . . . . . . . 10 (((∏t‘{⟨∅, 𝐽⟩}) ∈ (TopOn‘ (∏t‘{⟨∅, 𝐽⟩})) ∧ (∏t‘{⟨1o, 𝐾⟩}) ∈ (TopOn‘ (∏t‘{⟨1o, 𝐾⟩}))) → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
2413, 22, 23syl2anc 586 . . . . . . . . 9 (𝜑 → ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))))
25 opeq2 4806 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑥 → ⟨∅, 𝑧⟩ = ⟨∅, 𝑥⟩)
2625sneqd 4581 . . . . . . . . . . . . . . 15 (𝑧 = 𝑥 → {⟨∅, 𝑧⟩} = {⟨∅, 𝑥⟩})
27 eqid 2823 . . . . . . . . . . . . . . 15 (𝑧𝑋 ↦ {⟨∅, 𝑧⟩}) = (𝑧𝑋 ↦ {⟨∅, 𝑧⟩})
28 snex 5334 . . . . . . . . . . . . . . 15 {⟨∅, 𝑥⟩} ∈ V
2926, 27, 28fvmpt 6770 . . . . . . . . . . . . . 14 (𝑥𝑋 → ((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩})
30 opeq2 4806 . . . . . . . . . . . . . . . 16 (𝑧 = 𝑦 → ⟨1o, 𝑧⟩ = ⟨1o, 𝑦⟩)
3130sneqd 4581 . . . . . . . . . . . . . . 15 (𝑧 = 𝑦 → {⟨1o, 𝑧⟩} = {⟨1o, 𝑦⟩})
32 eqid 2823 . . . . . . . . . . . . . . 15 (𝑧𝑌 ↦ {⟨1o, 𝑧⟩}) = (𝑧𝑌 ↦ {⟨1o, 𝑧⟩})
33 snex 5334 . . . . . . . . . . . . . . 15 {⟨1o, 𝑦⟩} ∈ V
3431, 32, 33fvmpt 6770 . . . . . . . . . . . . . 14 (𝑦𝑌 → ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩})
35 opeq12 4807 . . . . . . . . . . . . . 14 ((((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥) = {⟨∅, 𝑥⟩} ∧ ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦) = {⟨1o, 𝑦⟩}) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3629, 34, 35syl2an 597 . . . . . . . . . . . . 13 ((𝑥𝑋𝑦𝑌) → ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩ = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
3736mpoeq3ia 7234 . . . . . . . . . . . 12 (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
38 toponuni 21524 . . . . . . . . . . . . . 14 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
391, 38syl 17 . . . . . . . . . . . . 13 (𝜑𝑋 = 𝐽)
40 toponuni 21524 . . . . . . . . . . . . . 14 (𝐾 ∈ (TopOn‘𝑌) → 𝑌 = 𝐾)
412, 40syl 17 . . . . . . . . . . . . 13 (𝜑𝑌 = 𝐾)
42 mpoeq12 7229 . . . . . . . . . . . . 13 ((𝑋 = 𝐽𝑌 = 𝐾) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4339, 41, 42syl2anc 586 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
4437, 43syl5eqr 2872 . . . . . . . . . . 11 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩))
45 eqid 2823 . . . . . . . . . . . 12 𝐽 = 𝐽
46 eqid 2823 . . . . . . . . . . . 12 𝐾 = 𝐾
4745, 46, 8, 17txhmeo 22413 . . . . . . . . . . 11 (𝜑 → (𝑥 𝐽, 𝑦 𝐾 ↦ ⟨((𝑧𝑋 ↦ {⟨∅, 𝑧⟩})‘𝑥), ((𝑧𝑌 ↦ {⟨1o, 𝑧⟩})‘𝑦)⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
4844, 47eqeltrd 2915 . . . . . . . . . 10 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
49 hmeocn 22370 . . . . . . . . . 10 ((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
5048, 49syl 17 . . . . . . . . 9 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))))
51 cnf2 21859 . . . . . . . . 9 (((𝐽 ×t 𝐾) ∈ (TopOn‘(𝑋 × 𝑌)) ∧ ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})) ∈ (TopOn‘( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾) Cn ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))) → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
524, 24, 50, 51syl3anc 1367 . . . . . . . 8 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
53 eqid 2823 . . . . . . . . 9 (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)
5453fmpo 7768 . . . . . . . 8 (∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↔ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩):(𝑋 × 𝑌)⟶( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5552, 54sylibr 236 . . . . . . 7 (𝜑 → ∀𝑥𝑋𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5655r19.21bi 3210 . . . . . 6 ((𝜑𝑥𝑋) → ∀𝑦𝑌 ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5756r19.21bi 3210 . . . . 5 (((𝜑𝑥𝑋) ∧ 𝑦𝑌) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
5857anasss 469 . . . 4 ((𝜑 ∧ (𝑥𝑋𝑦𝑌)) → ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})))
59 eqidd 2824 . . . 4 (𝜑 → (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) = (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩))
60 vex 3499 . . . . . . . . 9 𝑥 ∈ V
61 vex 3499 . . . . . . . . 9 𝑦 ∈ V
6260, 61op1std 7701 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (1st𝑧) = 𝑥)
6360, 61op2ndd 7702 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (2nd𝑧) = 𝑦)
6462, 63uneq12d 4142 . . . . . . 7 (𝑧 = ⟨𝑥, 𝑦⟩ → ((1st𝑧) ∪ (2nd𝑧)) = (𝑥𝑦))
6564mpompt 7268 . . . . . 6 (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦))
6665eqcomi 2832 . . . . 5 (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧)))
6766a1i 11 . . . 4 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) = (𝑧 ∈ ( (∏t‘{⟨∅, 𝐽⟩}) × (∏t‘{⟨1o, 𝐾⟩})) ↦ ((1st𝑧) ∪ (2nd𝑧))))
6828, 33op1std 7701 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (1st𝑧) = {⟨∅, 𝑥⟩})
6928, 33op2ndd 7702 . . . . . 6 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → (2nd𝑧) = {⟨1o, 𝑦⟩})
7068, 69uneq12d 4142 . . . . 5 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩}))
71 df-pr 4572 . . . . 5 {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩} = ({⟨∅, 𝑥⟩} ∪ {⟨1o, 𝑦⟩})
7270, 71syl6eqr 2876 . . . 4 (𝑧 = ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩ → ((1st𝑧) ∪ (2nd𝑧)) = {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7358, 59, 67, 72fmpoco 7792 . . 3 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
74 xpstopnlem1.f . . 3 𝐹 = (𝑥𝑋, 𝑦𝑌 ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7573, 74syl6reqr 2877 . 2 (𝜑𝐹 = ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)))
76 eqid 2823 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
77 eqid 2823 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
78 eqid 2823 . . . . 5 (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}) = (∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})
79 eqid 2823 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}))
80 eqid 2823 . . . . 5 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))
81 eqid 2823 . . . . 5 (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦))
82 2on 8113 . . . . . 6 2o ∈ On
8382a1i 11 . . . . 5 (𝜑 → 2o ∈ On)
84 topontop 21523 . . . . . . 7 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
851, 84syl 17 . . . . . 6 (𝜑𝐽 ∈ Top)
86 topontop 21523 . . . . . . 7 (𝐾 ∈ (TopOn‘𝑌) → 𝐾 ∈ Top)
872, 86syl 17 . . . . . 6 (𝜑𝐾 ∈ Top)
88 xpscf 16840 . . . . . 6 ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top ↔ (𝐽 ∈ Top ∧ 𝐾 ∈ Top))
8985, 87, 88sylanbrc 585 . . . . 5 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}:2o⟶Top)
90 df2o3 8119 . . . . . . 7 2o = {∅, 1o}
91 df-pr 4572 . . . . . . 7 {∅, 1o} = ({∅} ∪ {1o})
9290, 91eqtri 2846 . . . . . 6 2o = ({∅} ∪ {1o})
9392a1i 11 . . . . 5 (𝜑 → 2o = ({∅} ∪ {1o}))
94 1n0 8121 . . . . . . 7 1o ≠ ∅
9594necomi 3072 . . . . . 6 ∅ ≠ 1o
96 disjsn2 4650 . . . . . 6 (∅ ≠ 1o → ({∅} ∩ {1o}) = ∅)
9795, 96mp1i 13 . . . . 5 (𝜑 → ({∅} ∩ {1o}) = ∅)
9876, 77, 78, 79, 80, 81, 83, 89, 93, 97ptunhmeo 22418 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) ∈ (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
99 fnpr2o 16832 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘𝑌)) → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1001, 2, 99syl2anc 586 . . . . . . . . 9 (𝜑 → {⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o)
1016prid1 4700 . . . . . . . . . 10 ∅ ∈ {∅, 1o}
102101, 90eleqtrri 2914 . . . . . . . . 9 ∅ ∈ 2o
103 fnressn 6922 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ ∅ ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
104100, 102, 103sylancl 588 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩})
105 fvpr0o 16834 . . . . . . . . . . 11 (𝐽 ∈ (TopOn‘𝑋) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
1061, 105syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅) = 𝐽)
107106opeq2d 4812 . . . . . . . . 9 (𝜑 → ⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩ = ⟨∅, 𝐽⟩)
108107sneqd 4581 . . . . . . . 8 (𝜑 → {⟨∅, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘∅)⟩} = {⟨∅, 𝐽⟩})
109104, 108eqtrd 2858 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅}) = {⟨∅, 𝐽⟩})
110109fveq2d 6676 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
111110unieqd 4854 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) = (∏t‘{⟨∅, 𝐽⟩}))
112 1oex 8112 . . . . . . . . . . 11 1o ∈ V
113112prid2 4701 . . . . . . . . . 10 1o ∈ {∅, 1o}
114113, 90eleqtrri 2914 . . . . . . . . 9 1o ∈ 2o
115 fnressn 6922 . . . . . . . . 9 (({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} Fn 2o ∧ 1o ∈ 2o) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
116100, 114, 115sylancl 588 . . . . . . . 8 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩})
117 fvpr1o 16835 . . . . . . . . . . 11 (𝐾 ∈ (TopOn‘𝑌) → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
1182, 117syl 17 . . . . . . . . . 10 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o) = 𝐾)
119118opeq2d 4812 . . . . . . . . 9 (𝜑 → ⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩ = ⟨1o, 𝐾⟩)
120119sneqd 4581 . . . . . . . 8 (𝜑 → {⟨1o, ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}‘1o)⟩} = {⟨1o, 𝐾⟩})
121116, 120eqtrd 2858 . . . . . . 7 (𝜑 → ({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}) = {⟨1o, 𝐾⟩})
122121fveq2d 6676 . . . . . 6 (𝜑 → (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
123122unieqd 4854 . . . . 5 (𝜑 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) = (∏t‘{⟨1o, 𝐾⟩}))
124 eqidd 2824 . . . . 5 (𝜑 → (𝑥𝑦) = (𝑥𝑦))
125111, 123, 124mpoeq123dv 7231 . . . 4 (𝜑 → (𝑥 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})), 𝑦 (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})) ↦ (𝑥𝑦)) = (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)))
126110, 122oveq12d 7176 . . . . 5 (𝜑 → ((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o}))) = ((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩})))
127126oveq1d 7173 . . . 4 (𝜑 → (((∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {∅})) ×t (∏t‘({⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩} ↾ {1o})))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})) = (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
12898, 125, 1273eltr3d 2929 . . 3 (𝜑 → (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
129 hmeoco 22382 . . 3 (((𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩) ∈ ((𝐽 ×t 𝐾)Homeo((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))) ∧ (𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∈ (((∏t‘{⟨∅, 𝐽⟩}) ×t (∏t‘{⟨1o, 𝐾⟩}))Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩}))) → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13048, 128, 129syl2anc 586 . 2 (𝜑 → ((𝑥 (∏t‘{⟨∅, 𝐽⟩}), 𝑦 (∏t‘{⟨1o, 𝐾⟩}) ↦ (𝑥𝑦)) ∘ (𝑥𝑋, 𝑦𝑌 ↦ ⟨{⟨∅, 𝑥⟩}, {⟨1o, 𝑦⟩}⟩)) ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
13175, 130eqeltrd 2915 1 (𝜑𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t‘{⟨∅, 𝐽⟩, ⟨1o, 𝐾⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3018  wral 3140  Vcvv 3496  cun 3936  cin 3937  c0 4293  {csn 4569  {cpr 4571  cop 4575   cuni 4840  cmpt 5148   × cxp 5555  cres 5559  ccom 5561  Oncon0 6193   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  1st c1st 7689  2nd c2nd 7690  1oc1o 8097  2oc2o 8098  tcpt 16714  Topctop 21503  TopOnctopon 21520   Cn ccn 21834   ×t ctx 22170  Homeochmeo 22363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fi 8877  df-topgen 16719  df-pt 16720  df-top 21504  df-topon 21521  df-bases 21556  df-cn 21837  df-cnp 21838  df-tx 22172  df-hmeo 22365
This theorem is referenced by:  xpstopnlem2  22421
  Copyright terms: Public domain W3C validator