MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstopnlem2 Structured version   Visualization version   GIF version

Theorem xpstopnlem2 21524
Description: Lemma for xpstopn 21525. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
xpstopn.j 𝐽 = (TopOpen‘𝑅)
xpstopn.k 𝐾 = (TopOpen‘𝑆)
xpstopn.o 𝑂 = (TopOpen‘𝑇)
xpstopnlem.x 𝑋 = (Base‘𝑅)
xpstopnlem.y 𝑌 = (Base‘𝑆)
xpstopnlem.f 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
Assertion
Ref Expression
xpstopnlem2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Distinct variable groups:   𝑥,𝑦,𝐽   𝑥,𝐾,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦
Allowed substitution hints:   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)

Proof of Theorem xpstopnlem2
StepHypRef Expression
1 eqid 2621 . . . . 5 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
2 fvex 6158 . . . . . 6 (Scalar‘𝑅) ∈ V
32a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
4 2on 7513 . . . . . 6 2𝑜 ∈ On
54a1i 11 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2𝑜 ∈ On)
6 xpscfn 16140 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
7 eqid 2621 . . . . 5 (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})))
81, 3, 5, 6, 7prdstopn 21341 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (∏t‘(TopOpen ∘ ({𝑅} +𝑐 {𝑆}))))
9 topnfn 16007 . . . . . . . 8 TopOpen Fn V
10 dffn2 6004 . . . . . . . . 9 (({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝑅} +𝑐 {𝑆}):2𝑜⟶V)
116, 10sylib 208 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({𝑅} +𝑐 {𝑆}):2𝑜⟶V)
12 fnfco 6026 . . . . . . . 8 ((TopOpen Fn V ∧ ({𝑅} +𝑐 {𝑆}):2𝑜⟶V) → (TopOpen ∘ ({𝑅} +𝑐 {𝑆})) Fn 2𝑜)
139, 11, 12sylancr 694 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ ({𝑅} +𝑐 {𝑆})) Fn 2𝑜)
14 xpsfeq 16145 . . . . . . 7 ((TopOpen ∘ ({𝑅} +𝑐 {𝑆})) Fn 2𝑜({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = (TopOpen ∘ ({𝑅} +𝑐 {𝑆})))
1513, 14syl 17 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = (TopOpen ∘ ({𝑅} +𝑐 {𝑆})))
16 0ex 4750 . . . . . . . . . . . . 13 ∅ ∈ V
1716prid1 4267 . . . . . . . . . . . 12 ∅ ∈ {∅, 1𝑜}
18 df2o3 7518 . . . . . . . . . . . 12 2𝑜 = {∅, 1𝑜}
1917, 18eleqtrri 2697 . . . . . . . . . . 11 ∅ ∈ 2𝑜
20 fvco2 6230 . . . . . . . . . . 11 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧ ∅ ∈ 2𝑜) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)))
216, 19, 20sylancl 693 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)))
22 xpsc0 16141 . . . . . . . . . . . . 13 (𝑅 ∈ TopSp → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
2322adantr 481 . . . . . . . . . . . 12 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
2423fveq2d 6152 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)) = (TopOpen‘𝑅))
25 xpstopn.j . . . . . . . . . . 11 𝐽 = (TopOpen‘𝑅)
2624, 25syl6eqr 2673 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘∅)) = 𝐽)
2721, 26eqtrd 2655 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅) = 𝐽)
2827sneqd 4160 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} = {𝐽})
29 1on 7512 . . . . . . . . . . . . . 14 1𝑜 ∈ On
3029elexi 3199 . . . . . . . . . . . . 13 1𝑜 ∈ V
3130prid2 4268 . . . . . . . . . . . 12 1𝑜 ∈ {∅, 1𝑜}
3231, 18eleqtrri 2697 . . . . . . . . . . 11 1𝑜 ∈ 2𝑜
33 fvco2 6230 . . . . . . . . . . 11 ((({𝑅} +𝑐 {𝑆}) Fn 2𝑜 ∧ 1𝑜 ∈ 2𝑜) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)))
346, 32, 33sylancl 693 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜) = (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)))
35 xpsc1 16142 . . . . . . . . . . . . 13 (𝑆 ∈ TopSp → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3635adantl 482 . . . . . . . . . . . 12 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3736fveq2d 6152 . . . . . . . . . . 11 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)) = (TopOpen‘𝑆))
38 xpstopn.k . . . . . . . . . . 11 𝐾 = (TopOpen‘𝑆)
3937, 38syl6eqr 2673 . . . . . . . . . 10 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘(({𝑅} +𝑐 {𝑆})‘1𝑜)) = 𝐾)
4034, 39eqtrd 2655 . . . . . . . . 9 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜) = 𝐾)
4140sneqd 4160 . . . . . . . 8 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)} = {𝐾})
4228, 41oveq12d 6622 . . . . . . 7 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = ({𝐽} +𝑐 {𝐾}))
4342cnveqd 5258 . . . . . 6 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ({((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘∅)} +𝑐 {((TopOpen ∘ ({𝑅} +𝑐 {𝑆}))‘1𝑜)}) = ({𝐽} +𝑐 {𝐾}))
4415, 43eqtr3d 2657 . . . . 5 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen ∘ ({𝑅} +𝑐 {𝑆})) = ({𝐽} +𝑐 {𝐾}))
4544fveq2d 6152 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (∏t‘(TopOpen ∘ ({𝑅} +𝑐 {𝑆}))) = (∏t({𝐽} +𝑐 {𝐾})))
468, 45eqtrd 2655 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (∏t({𝐽} +𝑐 {𝐾})))
4746oveq1d 6619 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) qTop 𝐹) = ((∏t({𝐽} +𝑐 {𝐾})) qTop 𝐹))
48 xpstps.t . . . 4 𝑇 = (𝑅 ×s 𝑆)
49 xpstopnlem.x . . . 4 𝑋 = (Base‘𝑅)
50 xpstopnlem.y . . . 4 𝑌 = (Base‘𝑆)
51 simpl 473 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
52 simpr 477 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
53 xpstopnlem.f . . . 4 𝐹 = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
54 eqid 2621 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
5548, 49, 50, 51, 52, 53, 54, 1xpsval 16153 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = (𝐹s ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
5648, 49, 50, 51, 52, 53, 54, 1xpslem 16154 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran 𝐹 = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
5753xpsff1o2 16152 . . . . 5 𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹
58 f1ocnv 6106 . . . . 5 (𝐹:(𝑋 × 𝑌)–1-1-onto→ran 𝐹𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
5957, 58mp1i 13 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌))
60 f1ofo 6101 . . . 4 (𝐹:ran 𝐹1-1-onto→(𝑋 × 𝑌) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
6159, 60syl 17 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹:ran 𝐹onto→(𝑋 × 𝑌))
62 ovex 6632 . . . 4 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ V
6362a1i 11 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) ∈ V)
64 xpstopn.o . . 3 𝑂 = (TopOpen‘𝑇)
6555, 56, 61, 63, 7, 64imastopn 21433 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = ((TopOpen‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) qTop 𝐹))
6649, 25istps 20651 . . . . 5 (𝑅 ∈ TopSp ↔ 𝐽 ∈ (TopOn‘𝑋))
6751, 66sylib 208 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐽 ∈ (TopOn‘𝑋))
6850, 38istps 20651 . . . . 5 (𝑆 ∈ TopSp ↔ 𝐾 ∈ (TopOn‘𝑌))
6952, 68sylib 208 . . . 4 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐾 ∈ (TopOn‘𝑌))
7053, 67, 69xpstopnlem1 21522 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))))
71 hmeocnv 21475 . . 3 (𝐹 ∈ ((𝐽 ×t 𝐾)Homeo(∏t({𝐽} +𝑐 {𝐾}))) → 𝐹 ∈ ((∏t({𝐽} +𝑐 {𝐾}))Homeo(𝐽 ×t 𝐾)))
72 hmeoqtop 21488 . . 3 (𝐹 ∈ ((∏t({𝐽} +𝑐 {𝐾}))Homeo(𝐽 ×t 𝐾)) → (𝐽 ×t 𝐾) = ((∏t({𝐽} +𝑐 {𝐾})) qTop 𝐹))
7370, 71, 723syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝐽 ×t 𝐾) = ((∏t({𝐽} +𝑐 {𝐾})) qTop 𝐹))
7447, 65, 733eqtr4d 2665 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑂 = (𝐽 ×t 𝐾))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  Vcvv 3186  c0 3891  {csn 4148  {cpr 4150   × cxp 5072  ccnv 5073  ran crn 5075  ccom 5078  Oncon0 5682   Fn wfn 5842  wf 5843  ontowfo 5845  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  cmpt2 6606  1𝑜c1o 7498  2𝑜c2o 7499   +𝑐 ccda 8933  Basecbs 15781  Scalarcsca 15865  TopOpenctopn 16003  tcpt 16020  Xscprds 16027   qTop cqtop 16084   ×s cxps 16087  TopOnctopon 20618  TopSpctps 20619   ×t ctx 21273  Homeochmeo 21466
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-2o 7506  df-oadd 7509  df-er 7687  df-map 7804  df-ixp 7853  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-sup 8292  df-inf 8293  df-cda 8934  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-fz 12269  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-sca 15878  df-vsca 15879  df-ip 15880  df-tset 15881  df-ple 15882  df-ds 15885  df-hom 15887  df-cco 15888  df-rest 16004  df-topn 16005  df-topgen 16025  df-pt 16026  df-prds 16029  df-qtop 16088  df-imas 16089  df-xps 16091  df-top 20621  df-bases 20622  df-topon 20623  df-topsp 20624  df-cn 20941  df-cnp 20942  df-tx 21275  df-hmeo 21468
This theorem is referenced by:  xpstopn  21525
  Copyright terms: Public domain W3C validator