MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpstps Structured version   Visualization version   GIF version

Theorem xpstps 22346
Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypothesis
Ref Expression
xpstps.t 𝑇 = (𝑅 ×s 𝑆)
Assertion
Ref Expression
xpstps ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp)

Proof of Theorem xpstps
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpstps.t . . 3 𝑇 = (𝑅 ×s 𝑆)
2 eqid 2818 . . 3 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2818 . . 3 (Base‘𝑆) = (Base‘𝑆)
4 simpl 483 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑅 ∈ TopSp)
5 simpr 485 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑆 ∈ TopSp)
6 eqid 2818 . . 3 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
7 eqid 2818 . . 3 (Scalar‘𝑅) = (Scalar‘𝑅)
8 eqid 2818 . . 3 ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) = ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})
91, 2, 3, 4, 5, 6, 7, 8xpsval 16831 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 = ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) “s ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
101, 2, 3, 4, 5, 6, 7, 8xpsrnbas 16832 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) = (Base‘((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩})))
116xpsff1o2 16830 . . . 4 (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})
1211a1i 11 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}))
13 f1ocnv 6620 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):((Base‘𝑅) × (Base‘𝑆))–1-1-onto→ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)))
14 f1ofo 6615 . . 3 ((𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–1-1-onto→((Base‘𝑅) × (Base‘𝑆)) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→((Base‘𝑅) × (Base‘𝑆)))
1512, 13, 143syl 18 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩}):ran (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ (Base‘𝑆) ↦ {⟨∅, 𝑥⟩, ⟨1o, 𝑦⟩})–onto→((Base‘𝑅) × (Base‘𝑆)))
16 fvexd 6678 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → (Scalar‘𝑅) ∈ V)
17 2on 8100 . . . 4 2o ∈ On
1817a1i 11 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 2o ∈ On)
19 xpscf 16826 . . . 4 ({⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶TopSp ↔ (𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp))
2019biimpri 229 . . 3 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → {⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}:2o⟶TopSp)
218, 16, 18, 20prdstps 22165 . 2 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → ((Scalar‘𝑅)Xs{⟨∅, 𝑅⟩, ⟨1o, 𝑆⟩}) ∈ TopSp)
229, 10, 15, 21imastps 22257 1 ((𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp) → 𝑇 ∈ TopSp)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  Vcvv 3492  c0 4288  {cpr 4559  cop 4563   × cxp 5546  ccnv 5547  ran crn 5549  Oncon0 6184  wf 6344  ontowfo 6346  1-1-ontowf1o 6347  cfv 6348  (class class class)co 7145  cmpo 7147  1oc1o 8084  2oc2o 8085  Basecbs 16471  Scalarcsca 16556  Xscprds 16707   ×s cxps 16767  TopSpctps 21468
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-fi 8863  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-hom 16577  df-cco 16578  df-rest 16684  df-topn 16685  df-topgen 16705  df-pt 16706  df-prds 16709  df-qtop 16768  df-imas 16769  df-xps 16771  df-top 21430  df-topon 21447  df-topsp 21469  df-bases 21482
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator