MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xpsxmetlem Structured version   Visualization version   GIF version

Theorem xpsxmetlem 22165
Description: Lemma for xpsxmet 22166. (Contributed by Mario Carneiro, 21-Aug-2015.)
Hypotheses
Ref Expression
xpsds.t 𝑇 = (𝑅 ×s 𝑆)
xpsds.x 𝑋 = (Base‘𝑅)
xpsds.y 𝑌 = (Base‘𝑆)
xpsds.1 (𝜑𝑅𝑉)
xpsds.2 (𝜑𝑆𝑊)
xpsds.p 𝑃 = (dist‘𝑇)
xpsds.m 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
xpsds.n 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
xpsds.3 (𝜑𝑀 ∈ (∞Met‘𝑋))
xpsds.4 (𝜑𝑁 ∈ (∞Met‘𝑌))
Assertion
Ref Expression
xpsxmetlem (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
Distinct variable groups:   𝑥,𝑦   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥   𝑥,𝑅   𝑥,𝑆   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑊
Allowed substitution hints:   𝜑(𝑦)   𝑃(𝑥,𝑦)   𝑅(𝑦)   𝑆(𝑦)   𝑇(𝑥,𝑦)   𝑀(𝑦)   𝑁(𝑦)   𝑉(𝑥,𝑦)   𝑊(𝑦)

Proof of Theorem xpsxmetlem
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eqid 2620 . . 3 ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
2 eqid 2620 . . 3 (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
3 eqid 2620 . . 3 (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))
4 eqid 2620 . . 3 ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
5 eqid 2620 . . 3 (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
6 fvexd 6190 . . 3 (𝜑 → (Scalar‘𝑅) ∈ V)
7 2on 7553 . . . 4 2𝑜 ∈ On
87a1i 11 . . 3 (𝜑 → 2𝑜 ∈ On)
9 fvexd 6190 . . 3 ((𝜑𝑘 ∈ 2𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) ∈ V)
10 elpri 4188 . . . . 5 (𝑘 ∈ {∅, 1𝑜} → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
11 df2o3 7558 . . . . 5 2𝑜 = {∅, 1𝑜}
1210, 11eleq2s 2717 . . . 4 (𝑘 ∈ 2𝑜 → (𝑘 = ∅ ∨ 𝑘 = 1𝑜))
13 xpsds.3 . . . . . . 7 (𝜑𝑀 ∈ (∞Met‘𝑋))
1413adantr 481 . . . . . 6 ((𝜑𝑘 = ∅) → 𝑀 ∈ (∞Met‘𝑋))
15 fveq2 6178 . . . . . . . . . 10 (𝑘 = ∅ → (({𝑅} +𝑐 {𝑆})‘𝑘) = (({𝑅} +𝑐 {𝑆})‘∅))
16 xpsds.1 . . . . . . . . . . 11 (𝜑𝑅𝑉)
17 xpsc0 16201 . . . . . . . . . . 11 (𝑅𝑉 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
1816, 17syl 17 . . . . . . . . . 10 (𝜑 → (({𝑅} +𝑐 {𝑆})‘∅) = 𝑅)
1915, 18sylan9eqr 2676 . . . . . . . . 9 ((𝜑𝑘 = ∅) → (({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑅)
2019fveq2d 6182 . . . . . . . 8 ((𝜑𝑘 = ∅) → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑅))
2119fveq2d 6182 . . . . . . . . . 10 ((𝜑𝑘 = ∅) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑅))
22 xpsds.x . . . . . . . . . 10 𝑋 = (Base‘𝑅)
2321, 22syl6eqr 2672 . . . . . . . . 9 ((𝜑𝑘 = ∅) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑋)
2423sqxpeqd 5131 . . . . . . . 8 ((𝜑𝑘 = ∅) → ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑋 × 𝑋))
2520, 24reseq12d 5386 . . . . . . 7 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑅) ↾ (𝑋 × 𝑋)))
26 xpsds.m . . . . . . 7 𝑀 = ((dist‘𝑅) ↾ (𝑋 × 𝑋))
2725, 26syl6eqr 2672 . . . . . 6 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑀)
2823fveq2d 6182 . . . . . 6 ((𝜑𝑘 = ∅) → (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (∞Met‘𝑋))
2914, 27, 283eltr4d 2714 . . . . 5 ((𝜑𝑘 = ∅) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
30 xpsds.4 . . . . . . 7 (𝜑𝑁 ∈ (∞Met‘𝑌))
3130adantr 481 . . . . . 6 ((𝜑𝑘 = 1𝑜) → 𝑁 ∈ (∞Met‘𝑌))
32 fveq2 6178 . . . . . . . . . 10 (𝑘 = 1𝑜 → (({𝑅} +𝑐 {𝑆})‘𝑘) = (({𝑅} +𝑐 {𝑆})‘1𝑜))
33 xpsds.2 . . . . . . . . . . 11 (𝜑𝑆𝑊)
34 xpsc1 16202 . . . . . . . . . . 11 (𝑆𝑊 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3533, 34syl 17 . . . . . . . . . 10 (𝜑 → (({𝑅} +𝑐 {𝑆})‘1𝑜) = 𝑆)
3632, 35sylan9eqr 2676 . . . . . . . . 9 ((𝜑𝑘 = 1𝑜) → (({𝑅} +𝑐 {𝑆})‘𝑘) = 𝑆)
3736fveq2d 6182 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → (dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (dist‘𝑆))
3836fveq2d 6182 . . . . . . . . . 10 ((𝜑𝑘 = 1𝑜) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = (Base‘𝑆))
39 xpsds.y . . . . . . . . . 10 𝑌 = (Base‘𝑆)
4038, 39syl6eqr 2672 . . . . . . . . 9 ((𝜑𝑘 = 1𝑜) → (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) = 𝑌)
4140sqxpeqd 5131 . . . . . . . 8 ((𝜑𝑘 = 1𝑜) → ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (𝑌 × 𝑌))
4237, 41reseq12d 5386 . . . . . . 7 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = ((dist‘𝑆) ↾ (𝑌 × 𝑌)))
43 xpsds.n . . . . . . 7 𝑁 = ((dist‘𝑆) ↾ (𝑌 × 𝑌))
4442, 43syl6eqr 2672 . . . . . 6 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) = 𝑁)
4540fveq2d 6182 . . . . . 6 ((𝜑𝑘 = 1𝑜) → (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))) = (∞Met‘𝑌))
4631, 44, 453eltr4d 2714 . . . . 5 ((𝜑𝑘 = 1𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
4729, 46jaodan 825 . . . 4 ((𝜑 ∧ (𝑘 = ∅ ∨ 𝑘 = 1𝑜)) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
4812, 47sylan2 491 . . 3 ((𝜑𝑘 ∈ 2𝑜) → ((dist‘(({𝑅} +𝑐 {𝑆})‘𝑘)) ↾ ((Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)) × (Base‘(({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘(({𝑅} +𝑐 {𝑆})‘𝑘))))
491, 2, 3, 4, 5, 6, 8, 9, 48prdsxmet 22155 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))) ∈ (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))))
50 xpscfn 16200 . . . . . 6 ((𝑅𝑉𝑆𝑊) → ({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
5116, 33, 50syl2anc 692 . . . . 5 (𝜑({𝑅} +𝑐 {𝑆}) Fn 2𝑜)
52 dffn5 6228 . . . . 5 (({𝑅} +𝑐 {𝑆}) Fn 2𝑜({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
5351, 52sylib 208 . . . 4 (𝜑({𝑅} +𝑐 {𝑆}) = (𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))
5453oveq2d 6651 . . 3 (𝜑 → ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))
5554fveq2d 6182 . 2 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (dist‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
56 xpsds.t . . . . 5 𝑇 = (𝑅 ×s 𝑆)
57 eqid 2620 . . . . 5 (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))
58 eqid 2620 . . . . 5 (Scalar‘𝑅) = (Scalar‘𝑅)
59 eqid 2620 . . . . 5 ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆})) = ((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))
6056, 22, 39, 16, 33, 57, 58, 59xpslem 16214 . . . 4 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))))
6154fveq2d 6182 . . . 4 (𝜑 → (Base‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
6260, 61eqtrd 2654 . . 3 (𝜑 → ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦})) = (Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘)))))
6362fveq2d 6182 . 2 (𝜑 → (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))) = (∞Met‘(Base‘((Scalar‘𝑅)Xs(𝑘 ∈ 2𝑜 ↦ (({𝑅} +𝑐 {𝑆})‘𝑘))))))
6449, 55, 633eltr4d 2714 1 (𝜑 → (dist‘((Scalar‘𝑅)Xs({𝑅} +𝑐 {𝑆}))) ∈ (∞Met‘ran (𝑥𝑋, 𝑦𝑌({𝑥} +𝑐 {𝑦}))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 383  wa 384   = wceq 1481  wcel 1988  Vcvv 3195  c0 3907  {csn 4168  {cpr 4170  cmpt 4720   × cxp 5102  ccnv 5103  ran crn 5105  cres 5106  Oncon0 5711   Fn wfn 5871  cfv 5876  (class class class)co 6635  cmpt2 6637  1𝑜c1o 7538  2𝑜c2o 7539   +𝑐 ccda 8974  Basecbs 15838  Scalarcsca 15925  distcds 15931  Xscprds 16087   ×s cxps 16147  ∞Metcxmt 19712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-int 4467  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-1st 7153  df-2nd 7154  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-1o 7545  df-2o 7546  df-oadd 7549  df-er 7727  df-map 7844  df-ixp 7894  df-en 7941  df-dom 7942  df-sdom 7943  df-fin 7944  df-sup 8333  df-cda 8975  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-3 11065  df-4 11066  df-5 11067  df-6 11068  df-7 11069  df-8 11070  df-9 11071  df-n0 11278  df-z 11363  df-dec 11479  df-uz 11673  df-rp 11818  df-xneg 11931  df-xadd 11932  df-xmul 11933  df-icc 12167  df-fz 12312  df-struct 15840  df-ndx 15841  df-slot 15842  df-base 15844  df-plusg 15935  df-mulr 15936  df-sca 15938  df-vsca 15939  df-ip 15940  df-tset 15941  df-ple 15942  df-ds 15945  df-hom 15947  df-cco 15948  df-prds 16089  df-xmet 19720
This theorem is referenced by:  xpsxmet  22166  xpsdsval  22167
  Copyright terms: Public domain W3C validator