Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifcnv Structured version   Visualization version   GIF version

Theorem xrge0iifcnv 30107
Description: Define a bijection from [0, 1] to [0, +∞]. (Contributed by Thierry Arnoux, 29-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifcnv (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐹(𝑥,𝑦)

Proof of Theorem xrge0iifcnv
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 0xr 10124 . . . . . . 7 0 ∈ ℝ*
3 pnfxr 10130 . . . . . . 7 +∞ ∈ ℝ*
4 0lepnf 12004 . . . . . . 7 0 ≤ +∞
5 ubicc2 12327 . . . . . . 7 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → +∞ ∈ (0[,]+∞))
62, 3, 4, 5mp3an 1464 . . . . . 6 +∞ ∈ (0[,]+∞)
76a1i 11 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ 𝑥 = 0) → +∞ ∈ (0[,]+∞))
8 icossicc 12298 . . . . . 6 (0[,)+∞) ⊆ (0[,]+∞)
9 uncom 3790 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = ((0(,]1) ∪ {0})
10 1re 10077 . . . . . . . . . . . . . . . 16 1 ∈ ℝ
1110rexri 10135 . . . . . . . . . . . . . . 15 1 ∈ ℝ*
12 0le1 10589 . . . . . . . . . . . . . . 15 0 ≤ 1
13 snunioc 12338 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
142, 11, 12, 13mp3an 1464 . . . . . . . . . . . . . 14 ({0} ∪ (0(,]1)) = (0[,]1)
159, 14eqtr3i 2675 . . . . . . . . . . . . 13 ((0(,]1) ∪ {0}) = (0[,]1)
1615eleq2i 2722 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ 𝑥 ∈ (0[,]1))
17 elun 3786 . . . . . . . . . . . 12 (𝑥 ∈ ((0(,]1) ∪ {0}) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
1816, 17bitr3i 266 . . . . . . . . . . 11 (𝑥 ∈ (0[,]1) ↔ (𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}))
19 pm2.53 387 . . . . . . . . . . 11 ((𝑥 ∈ (0(,]1) ∨ 𝑥 ∈ {0}) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
2018, 19sylbi 207 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 ∈ {0}))
21 elsni 4227 . . . . . . . . . 10 (𝑥 ∈ {0} → 𝑥 = 0)
2220, 21syl6 35 . . . . . . . . 9 (𝑥 ∈ (0[,]1) → (¬ 𝑥 ∈ (0(,]1) → 𝑥 = 0))
2322con1d 139 . . . . . . . 8 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → 𝑥 ∈ (0(,]1)))
2423imp 444 . . . . . . 7 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → 𝑥 ∈ (0(,]1))
25 0le0 11148 . . . . . . . . . . . . . 14 0 ≤ 0
26 ltpnf 11992 . . . . . . . . . . . . . . 15 (1 ∈ ℝ → 1 < +∞)
2710, 26ax-mp 5 . . . . . . . . . . . . . 14 1 < +∞
28 iocssioo 12301 . . . . . . . . . . . . . 14 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
292, 3, 25, 27, 28mp4an 709 . . . . . . . . . . . . 13 (0(,]1) ⊆ (0(,)+∞)
30 ioorp 12289 . . . . . . . . . . . . 13 (0(,)+∞) = ℝ+
3129, 30sseqtri 3670 . . . . . . . . . . . 12 (0(,]1) ⊆ ℝ+
3231sseli 3632 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ∈ ℝ+)
3332relogcld 24414 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℝ)
3433renegcld 10495 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ)
3534rexrd 10127 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ ℝ*)
36 elioc1 12255 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1)))
372, 11, 36mp2an 708 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) ↔ (𝑥 ∈ ℝ* ∧ 0 < 𝑥𝑥 ≤ 1))
3837simp3bi 1098 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → 𝑥 ≤ 1)
39 1rp 11874 . . . . . . . . . . . . 13 1 ∈ ℝ+
4039a1i 11 . . . . . . . . . . . 12 (𝑥 ∈ (0(,]1) → 1 ∈ ℝ+)
4132, 40logled 24418 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (𝑥 ≤ 1 ↔ (log‘𝑥) ≤ (log‘1)))
4238, 41mpbid 222 . . . . . . . . . 10 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ (log‘1))
43 log1 24377 . . . . . . . . . 10 (log‘1) = 0
4442, 43syl6breq 4726 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → (log‘𝑥) ≤ 0)
4533le0neg1d 10637 . . . . . . . . 9 (𝑥 ∈ (0(,]1) → ((log‘𝑥) ≤ 0 ↔ 0 ≤ -(log‘𝑥)))
4644, 45mpbid 222 . . . . . . . 8 (𝑥 ∈ (0(,]1) → 0 ≤ -(log‘𝑥))
47 ltpnf 11992 . . . . . . . . 9 (-(log‘𝑥) ∈ ℝ → -(log‘𝑥) < +∞)
4834, 47syl 17 . . . . . . . 8 (𝑥 ∈ (0(,]1) → -(log‘𝑥) < +∞)
49 elico1 12256 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞)))
502, 3, 49mp2an 708 . . . . . . . 8 (-(log‘𝑥) ∈ (0[,)+∞) ↔ (-(log‘𝑥) ∈ ℝ* ∧ 0 ≤ -(log‘𝑥) ∧ -(log‘𝑥) < +∞))
5135, 46, 48, 50syl3anbrc 1265 . . . . . . 7 (𝑥 ∈ (0(,]1) → -(log‘𝑥) ∈ (0[,)+∞))
5224, 51syl 17 . . . . . 6 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,)+∞))
538, 52sseldi 3634 . . . . 5 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → -(log‘𝑥) ∈ (0[,]+∞))
547, 53ifclda 4153 . . . 4 (𝑥 ∈ (0[,]1) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
5554adantl 481 . . 3 ((⊤ ∧ 𝑥 ∈ (0[,]1)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,]+∞))
56 0elunit 12328 . . . . . 6 0 ∈ (0[,]1)
5756a1i 11 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ 𝑦 = +∞) → 0 ∈ (0[,]1))
58 iocssicc 12299 . . . . . 6 (0(,]1) ⊆ (0[,]1)
59 snunico 12337 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 0 ≤ +∞) → ((0[,)+∞) ∪ {+∞}) = (0[,]+∞))
602, 3, 4, 59mp3an 1464 . . . . . . . . . . . . 13 ((0[,)+∞) ∪ {+∞}) = (0[,]+∞)
6160eleq2i 2722 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ 𝑦 ∈ (0[,]+∞))
62 elun 3786 . . . . . . . . . . . 12 (𝑦 ∈ ((0[,)+∞) ∪ {+∞}) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
6361, 62bitr3i 266 . . . . . . . . . . 11 (𝑦 ∈ (0[,]+∞) ↔ (𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}))
64 pm2.53 387 . . . . . . . . . . 11 ((𝑦 ∈ (0[,)+∞) ∨ 𝑦 ∈ {+∞}) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
6563, 64sylbi 207 . . . . . . . . . 10 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 ∈ {+∞}))
66 elsni 4227 . . . . . . . . . 10 (𝑦 ∈ {+∞} → 𝑦 = +∞)
6765, 66syl6 35 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 ∈ (0[,)+∞) → 𝑦 = +∞))
6867con1d 139 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (¬ 𝑦 = +∞ → 𝑦 ∈ (0[,)+∞)))
6968imp 444 . . . . . . 7 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 𝑦 ∈ (0[,)+∞))
70 rge0ssre 12318 . . . . . . . . . . . 12 (0[,)+∞) ⊆ ℝ
7170sseli 3632 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℝ)
7271renegcld 10495 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ∈ ℝ)
7372reefcld 14862 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ)
7473rexrd 10127 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ ℝ*)
75 efgt0 14877 . . . . . . . . 9 (-𝑦 ∈ ℝ → 0 < (exp‘-𝑦))
7672, 75syl 17 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → 0 < (exp‘-𝑦))
77 elico1 12256 . . . . . . . . . . . . 13 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞)))
782, 3, 77mp2an 708 . . . . . . . . . . . 12 (𝑦 ∈ (0[,)+∞) ↔ (𝑦 ∈ ℝ* ∧ 0 ≤ 𝑦𝑦 < +∞))
7978simp2bi 1097 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 0 ≤ 𝑦)
8071le0neg2d 10638 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → (0 ≤ 𝑦 ↔ -𝑦 ≤ 0))
8179, 80mpbid 222 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → -𝑦 ≤ 0)
82 0re 10078 . . . . . . . . . . 11 0 ∈ ℝ
83 efle 14892 . . . . . . . . . . 11 ((-𝑦 ∈ ℝ ∧ 0 ∈ ℝ) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8472, 82, 83sylancl 695 . . . . . . . . . 10 (𝑦 ∈ (0[,)+∞) → (-𝑦 ≤ 0 ↔ (exp‘-𝑦) ≤ (exp‘0)))
8581, 84mpbid 222 . . . . . . . . 9 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ (exp‘0))
86 ef0 14865 . . . . . . . . 9 (exp‘0) = 1
8785, 86syl6breq 4726 . . . . . . . 8 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ≤ 1)
88 elioc1 12255 . . . . . . . . 9 ((0 ∈ ℝ* ∧ 1 ∈ ℝ*) → ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1)))
892, 11, 88mp2an 708 . . . . . . . 8 ((exp‘-𝑦) ∈ (0(,]1) ↔ ((exp‘-𝑦) ∈ ℝ* ∧ 0 < (exp‘-𝑦) ∧ (exp‘-𝑦) ≤ 1))
9074, 76, 87, 89syl3anbrc 1265 . . . . . . 7 (𝑦 ∈ (0[,)+∞) → (exp‘-𝑦) ∈ (0(,]1))
9169, 90syl 17 . . . . . 6 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0(,]1))
9258, 91sseldi 3634 . . . . 5 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → (exp‘-𝑦) ∈ (0[,]1))
9357, 92ifclda 4153 . . . 4 (𝑦 ∈ (0[,]+∞) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
9493adantl 481 . . 3 ((⊤ ∧ 𝑦 ∈ (0[,]+∞)) → if(𝑦 = +∞, 0, (exp‘-𝑦)) ∈ (0[,]1))
95 eqeq2 2662 . . . . . 6 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = 0 ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9695bibi1d 332 . . . . 5 (0 = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
97 eqeq2 2662 . . . . . 6 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → (𝑥 = (exp‘-𝑦) ↔ 𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦))))
9897bibi1d 332 . . . . 5 ((exp‘-𝑦) = if(𝑦 = +∞, 0, (exp‘-𝑦)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))) ↔ (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
99 simpr 476 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 = +∞)
100 iftrue 4125 . . . . . . . 8 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
101100eqeq2d 2661 . . . . . . 7 (𝑥 = 0 → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) ↔ 𝑦 = +∞))
10299, 101syl5ibrcom 237 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 → 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
103 ubico 29665 . . . . . . . . . . 11 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → ¬ +∞ ∈ (0[,)+∞))
10482, 3, 103mp2an 708 . . . . . . . . . 10 ¬ +∞ ∈ (0[,)+∞)
105104nelir 2929 . . . . . . . . 9 +∞ ∉ (0[,)+∞)
106 neleq1 2931 . . . . . . . . . 10 (𝑦 = +∞ → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
107106adantl 481 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 ∉ (0[,)+∞) ↔ +∞ ∉ (0[,)+∞)))
108105, 107mpbiri 248 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → 𝑦 ∉ (0[,)+∞))
109 neleq1 2931 . . . . . . . 8 (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 ∉ (0[,)+∞) ↔ if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
110108, 109syl5ibcom 235 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞)))
111 df-nel 2927 . . . . . . . 8 (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) ↔ ¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
112 iffalse 4128 . . . . . . . . . . . . 13 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
113112adantl 481 . . . . . . . . . . . 12 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) = -(log‘𝑥))
114113, 52eqeltrd 2730 . . . . . . . . . . 11 ((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞))
115114ex 449 . . . . . . . . . 10 (𝑥 ∈ (0[,]1) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
116115ad2antrr 762 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ 𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞)))
117116con1d 139 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (¬ if(𝑥 = 0, +∞, -(log‘𝑥)) ∈ (0[,)+∞) → 𝑥 = 0))
118111, 117syl5bi 232 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (if(𝑥 = 0, +∞, -(log‘𝑥)) ∉ (0[,)+∞) → 𝑥 = 0))
119110, 118syld 47 . . . . . 6 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)) → 𝑥 = 0))
120102, 119impbid 202 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 𝑦 = +∞) → (𝑥 = 0 ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
121 eqeq2 2662 . . . . . . 7 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = +∞ ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
122121bibi2d 331 . . . . . 6 (+∞ = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
123 eqeq2 2662 . . . . . . 7 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → (𝑦 = -(log‘𝑥) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
124123bibi2d 331 . . . . . 6 (-(log‘𝑥) = if(𝑥 = 0, +∞, -(log‘𝑥)) → ((𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)) ↔ (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥)))))
12582a1i 11 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ∈ ℝ)
12669, 76syl 17 . . . . . . . . . . . 12 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 < (exp‘-𝑦))
127125, 126ltned 10211 . . . . . . . . . . 11 ((𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
128127adantll 750 . . . . . . . . . 10 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → 0 ≠ (exp‘-𝑦))
129128neneqd 2828 . . . . . . . . 9 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → ¬ 0 = (exp‘-𝑦))
130 eqeq1 2655 . . . . . . . . . 10 (𝑥 = 0 → (𝑥 = (exp‘-𝑦) ↔ 0 = (exp‘-𝑦)))
131130notbid 307 . . . . . . . . 9 (𝑥 = 0 → (¬ 𝑥 = (exp‘-𝑦) ↔ ¬ 0 = (exp‘-𝑦)))
132129, 131syl5ibrcom 237 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = 0 → ¬ 𝑥 = (exp‘-𝑦)))
133132imp 444 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑥 = (exp‘-𝑦))
134 simplr 807 . . . . . . 7 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → ¬ 𝑦 = +∞)
135133, 1342falsed 365 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = +∞))
136 eqcom 2658 . . . . . . . . . . 11 (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥)
137136a1i 11 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ (exp‘-𝑦) = 𝑥))
138 relogeftb 24376 . . . . . . . . . . 11 ((𝑥 ∈ ℝ+ ∧ -𝑦 ∈ ℝ) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
13932, 72, 138syl2an 493 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦 ↔ (exp‘-𝑦) = 𝑥))
14033recnd 10106 . . . . . . . . . . 11 (𝑥 ∈ (0(,]1) → (log‘𝑥) ∈ ℂ)
14171recnd 10106 . . . . . . . . . . 11 (𝑦 ∈ (0[,)+∞) → 𝑦 ∈ ℂ)
142 negcon2 10372 . . . . . . . . . . 11 (((log‘𝑥) ∈ ℂ ∧ 𝑦 ∈ ℂ) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
143140, 141, 142syl2an 493 . . . . . . . . . 10 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → ((log‘𝑥) = -𝑦𝑦 = -(log‘𝑥)))
144137, 139, 1433bitr2d 296 . . . . . . . . 9 ((𝑥 ∈ (0(,]1) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
14524, 69, 144syl2an 493 . . . . . . . 8 (((𝑥 ∈ (0[,]1) ∧ ¬ 𝑥 = 0) ∧ (𝑦 ∈ (0[,]+∞) ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
146145an4s 886 . . . . . . 7 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ (¬ 𝑥 = 0 ∧ ¬ 𝑦 = +∞)) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
147146anass1rs 866 . . . . . 6 ((((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) ∧ ¬ 𝑥 = 0) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = -(log‘𝑥)))
148122, 124, 135, 147ifbothda 4156 . . . . 5 (((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) ∧ ¬ 𝑦 = +∞) → (𝑥 = (exp‘-𝑦) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
14996, 98, 120, 148ifbothda 4156 . . . 4 ((𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞)) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
150149adantl 481 . . 3 ((⊤ ∧ (𝑥 ∈ (0[,]1) ∧ 𝑦 ∈ (0[,]+∞))) → (𝑥 = if(𝑦 = +∞, 0, (exp‘-𝑦)) ↔ 𝑦 = if(𝑥 = 0, +∞, -(log‘𝑥))))
1511, 55, 94, 150f1ocnv2d 6928 . 2 (⊤ → (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦)))))
152151trud 1533 1 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wtru 1524  wcel 2030  wne 2823  wnel 2926  cun 3605  wss 3607  ifcif 4119  {csn 4210   class class class wbr 4685  cmpt 4762  ccnv 5142  1-1-ontowf1o 5925  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113  -cneg 10305  +crp 11870  (,)cioo 12213  (,]cioc 12214  [,)cico 12215  [,]cicc 12216  expce 14836  logclog 24346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053  ax-mulf 10054
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-fi 8358  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-cda 9028  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-q 11827  df-rp 11871  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-fz 12365  df-fzo 12505  df-fl 12633  df-mod 12709  df-seq 12842  df-exp 12901  df-fac 13101  df-bc 13130  df-hash 13158  df-shft 13851  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-limsup 14246  df-clim 14263  df-rlim 14264  df-sum 14461  df-ef 14842  df-sin 14844  df-cos 14845  df-pi 14847  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-hom 16013  df-cco 16014  df-rest 16130  df-topn 16131  df-0g 16149  df-gsum 16150  df-topgen 16151  df-pt 16152  df-prds 16155  df-xrs 16209  df-qtop 16214  df-imas 16215  df-xps 16217  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-mulg 17588  df-cntz 17796  df-cmn 18241  df-psmet 19786  df-xmet 19787  df-met 19788  df-bl 19789  df-mopn 19790  df-fbas 19791  df-fg 19792  df-cnfld 19795  df-top 20747  df-topon 20764  df-topsp 20785  df-bases 20798  df-cld 20871  df-ntr 20872  df-cls 20873  df-nei 20950  df-lp 20988  df-perf 20989  df-cn 21079  df-cnp 21080  df-haus 21167  df-tx 21413  df-hmeo 21606  df-fil 21697  df-fm 21789  df-flim 21790  df-flf 21791  df-xms 22172  df-ms 22173  df-tms 22174  df-cncf 22728  df-limc 23675  df-dv 23676  df-log 24348
This theorem is referenced by:  xrge0iifiso  30109  xrge0iifmhm  30113  xrge0pluscn  30114
  Copyright terms: Public domain W3C validator