Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0iifiso Structured version   Visualization version   GIF version

Theorem xrge0iifiso 29115
Description: The defined bijection from the closed unit interval and the extended nonnegative reals is an order isomorphism. (Contributed by Thierry Arnoux, 31-Mar-2017.)
Hypothesis
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
Assertion
Ref Expression
xrge0iifiso 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Distinct variable group:   𝑥,𝐹

Proof of Theorem xrge0iifiso
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iccssxr 12083 . . 3 (0[,]1) ⊆ ℝ*
2 xrltso 11809 . . 3 < Or ℝ*
3 soss 4967 . . 3 ((0[,]1) ⊆ ℝ* → ( < Or ℝ* → < Or (0[,]1)))
41, 2, 3mp2 9 . 2 < Or (0[,]1)
5 iccssxr 12083 . . 3 (0[,]+∞) ⊆ ℝ*
6 cnvso 5577 . . . . 5 ( < Or ℝ* < Or ℝ*)
72, 6mpbi 218 . . . 4 < Or ℝ*
8 sopo 4966 . . . 4 ( < Or ℝ* < Po ℝ*)
97, 8ax-mp 5 . . 3 < Po ℝ*
10 poss 4951 . . 3 ((0[,]+∞) ⊆ ℝ* → ( < Po ℝ* < Po (0[,]+∞)))
115, 9, 10mp2 9 . 2 < Po (0[,]+∞)
12 xrge0iifhmeo.1 . . . . 5 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
1312xrge0iifcnv 29113 . . . 4 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑧 ∈ (0[,]+∞) ↦ if(𝑧 = +∞, 0, (exp‘-𝑧))))
1413simpli 472 . . 3 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
15 f1ofo 6042 . . 3 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)–onto→(0[,]+∞))
1614, 15ax-mp 5 . 2 𝐹:(0[,]1)–onto→(0[,]+∞)
17 0xr 9942 . . . . . . . 8 0 ∈ ℝ*
18 1re 9895 . . . . . . . . 9 1 ∈ ℝ
1918rexri 9948 . . . . . . . 8 1 ∈ ℝ*
20 0le1 10400 . . . . . . . 8 0 ≤ 1
21 snunioc 12127 . . . . . . . 8 ((0 ∈ ℝ* ∧ 1 ∈ ℝ* ∧ 0 ≤ 1) → ({0} ∪ (0(,]1)) = (0[,]1))
2217, 19, 20, 21mp3an 1415 . . . . . . 7 ({0} ∪ (0(,]1)) = (0[,]1)
2322eleq2i 2679 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ 𝑤 ∈ (0[,]1))
24 elun 3714 . . . . . 6 (𝑤 ∈ ({0} ∪ (0(,]1)) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
2523, 24bitr3i 264 . . . . 5 (𝑤 ∈ (0[,]1) ↔ (𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)))
26 velsn 4140 . . . . . . 7 (𝑤 ∈ {0} ↔ 𝑤 = 0)
27 elunitrn 29077 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ∈ ℝ)
2827adantr 479 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ ℝ)
29 simpr 475 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 0 < 𝑧)
30 0re 9896 . . . . . . . . . . . . . 14 0 ∈ ℝ
3130, 18elicc2i 12066 . . . . . . . . . . . . 13 (𝑧 ∈ (0[,]1) ↔ (𝑧 ∈ ℝ ∧ 0 ≤ 𝑧𝑧 ≤ 1))
3231simp3bi 1070 . . . . . . . . . . . 12 (𝑧 ∈ (0[,]1) → 𝑧 ≤ 1)
3332adantr 479 . . . . . . . . . . 11 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ≤ 1)
34 elioc2 12063 . . . . . . . . . . . 12 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1)))
3517, 18, 34mp2an 703 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) ↔ (𝑧 ∈ ℝ ∧ 0 < 𝑧𝑧 ≤ 1))
3628, 29, 33, 35syl3anbrc 1238 . . . . . . . . . 10 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → 𝑧 ∈ (0(,]1))
37 pnfxr 11781 . . . . . . . . . . . . . . 15 +∞ ∈ ℝ*
38 0le0 10957 . . . . . . . . . . . . . . 15 0 ≤ 0
39 ltpnf 11791 . . . . . . . . . . . . . . . 16 (1 ∈ ℝ → 1 < +∞)
4018, 39ax-mp 5 . . . . . . . . . . . . . . 15 1 < +∞
41 iocssioo 12090 . . . . . . . . . . . . . . 15 (((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (0 ≤ 0 ∧ 1 < +∞)) → (0(,]1) ⊆ (0(,)+∞))
4217, 37, 38, 40, 41mp4an 704 . . . . . . . . . . . . . 14 (0(,]1) ⊆ (0(,)+∞)
43 ioorp 12078 . . . . . . . . . . . . . 14 (0(,)+∞) = ℝ+
4442, 43sseqtri 3599 . . . . . . . . . . . . 13 (0(,]1) ⊆ ℝ+
4544sseli 3563 . . . . . . . . . . . 12 (𝑧 ∈ (0(,]1) → 𝑧 ∈ ℝ+)
46 relogcl 24043 . . . . . . . . . . . . . . 15 (𝑧 ∈ ℝ+ → (log‘𝑧) ∈ ℝ)
4746renegcld 10308 . . . . . . . . . . . . . 14 (𝑧 ∈ ℝ+ → -(log‘𝑧) ∈ ℝ)
48 ltpnf 11791 . . . . . . . . . . . . . 14 (-(log‘𝑧) ∈ ℝ → -(log‘𝑧) < +∞)
4947, 48syl 17 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → -(log‘𝑧) < +∞)
50 brcnvg 5213 . . . . . . . . . . . . . 14 ((+∞ ∈ ℝ* ∧ -(log‘𝑧) ∈ ℝ) → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5137, 47, 50sylancr 693 . . . . . . . . . . . . 13 (𝑧 ∈ ℝ+ → (+∞ < -(log‘𝑧) ↔ -(log‘𝑧) < +∞))
5249, 51mpbird 245 . . . . . . . . . . . 12 (𝑧 ∈ ℝ+ → +∞ < -(log‘𝑧))
5345, 52syl 17 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → +∞ < -(log‘𝑧))
5412xrge0iifcv 29114 . . . . . . . . . . 11 (𝑧 ∈ (0(,]1) → (𝐹𝑧) = -(log‘𝑧))
5553, 54breqtrrd 4605 . . . . . . . . . 10 (𝑧 ∈ (0(,]1) → +∞ < (𝐹𝑧))
5636, 55syl 17 . . . . . . . . 9 ((𝑧 ∈ (0[,]1) ∧ 0 < 𝑧) → +∞ < (𝐹𝑧))
5756ex 448 . . . . . . . 8 (𝑧 ∈ (0[,]1) → (0 < 𝑧 → +∞ < (𝐹𝑧)))
58 breq1 4580 . . . . . . . . 9 (𝑤 = 0 → (𝑤 < 𝑧 ↔ 0 < 𝑧))
59 fveq2 6088 . . . . . . . . . . 11 (𝑤 = 0 → (𝐹𝑤) = (𝐹‘0))
60 0elunit 12117 . . . . . . . . . . . 12 0 ∈ (0[,]1)
61 iftrue 4041 . . . . . . . . . . . . 13 (𝑥 = 0 → if(𝑥 = 0, +∞, -(log‘𝑥)) = +∞)
62 pnfex 11782 . . . . . . . . . . . . 13 +∞ ∈ V
6361, 12, 62fvmpt 6176 . . . . . . . . . . . 12 (0 ∈ (0[,]1) → (𝐹‘0) = +∞)
6460, 63ax-mp 5 . . . . . . . . . . 11 (𝐹‘0) = +∞
6559, 64syl6eq 2659 . . . . . . . . . 10 (𝑤 = 0 → (𝐹𝑤) = +∞)
6665breq1d 4587 . . . . . . . . 9 (𝑤 = 0 → ((𝐹𝑤) < (𝐹𝑧) ↔ +∞ < (𝐹𝑧)))
6758, 66imbi12d 332 . . . . . . . 8 (𝑤 = 0 → ((𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)) ↔ (0 < 𝑧 → +∞ < (𝐹𝑧))))
6857, 67syl5ibr 234 . . . . . . 7 (𝑤 = 0 → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
6926, 68sylbi 205 . . . . . 6 (𝑤 ∈ {0} → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
70 simpll 785 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ (0(,]1))
7127ad2antlr 758 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ ℝ)
7230a1i 11 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 ∈ ℝ)
7344sseli 3563 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ+)
7473rpred 11704 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 𝑤 ∈ ℝ)
7574ad2antrr 757 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 ∈ ℝ)
76 elioc2 12063 . . . . . . . . . . . . . 14 ((0 ∈ ℝ* ∧ 1 ∈ ℝ) → (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1)))
7717, 18, 76mp2an 703 . . . . . . . . . . . . 13 (𝑤 ∈ (0(,]1) ↔ (𝑤 ∈ ℝ ∧ 0 < 𝑤𝑤 ≤ 1))
7877simp2bi 1069 . . . . . . . . . . . 12 (𝑤 ∈ (0(,]1) → 0 < 𝑤)
7978ad2antrr 757 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑤)
80 simpr 475 . . . . . . . . . . 11 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑤 < 𝑧)
8172, 75, 71, 79, 80lttrd 10049 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 0 < 𝑧)
8232ad2antlr 758 . . . . . . . . . 10 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ≤ 1)
8371, 81, 82, 35syl3anbrc 1238 . . . . . . . . 9 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → 𝑧 ∈ (0(,]1))
8470, 83jca 552 . . . . . . . 8 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)))
8573adantr 479 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑤 ∈ ℝ+)
8685relogcld 24090 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑤) ∈ ℝ)
8745adantl 480 . . . . . . . . . . . . 13 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → 𝑧 ∈ ℝ+)
8887relogcld 24090 . . . . . . . . . . . 12 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (log‘𝑧) ∈ ℝ)
8986, 88ltnegd 10454 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((log‘𝑤) < (log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
90 logltb 24067 . . . . . . . . . . . 12 ((𝑤 ∈ ℝ+𝑧 ∈ ℝ+) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
9173, 45, 90syl2an 492 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ (log‘𝑤) < (log‘𝑧)))
92 negex 10130 . . . . . . . . . . . . 13 -(log‘𝑤) ∈ V
93 negex 10130 . . . . . . . . . . . . 13 -(log‘𝑧) ∈ V
9492, 93brcnv 5215 . . . . . . . . . . . 12 (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤))
9594a1i 11 . . . . . . . . . . 11 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (-(log‘𝑤) < -(log‘𝑧) ↔ -(log‘𝑧) < -(log‘𝑤)))
9689, 91, 953bitr4d 298 . . . . . . . . . 10 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 ↔ -(log‘𝑤) < -(log‘𝑧)))
9796biimpd 217 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → -(log‘𝑤) < -(log‘𝑧)))
9812xrge0iifcv 29114 . . . . . . . . . 10 (𝑤 ∈ (0(,]1) → (𝐹𝑤) = -(log‘𝑤))
9998, 54breqan12d 4593 . . . . . . . . 9 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → ((𝐹𝑤) < (𝐹𝑧) ↔ -(log‘𝑤) < -(log‘𝑧)))
10097, 99sylibrd 247 . . . . . . . 8 ((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0(,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
10184, 80, 100sylc 62 . . . . . . 7 (((𝑤 ∈ (0(,]1) ∧ 𝑧 ∈ (0[,]1)) ∧ 𝑤 < 𝑧) → (𝐹𝑤) < (𝐹𝑧))
102101exp31 627 . . . . . 6 (𝑤 ∈ (0(,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10369, 102jaoi 392 . . . . 5 ((𝑤 ∈ {0} ∨ 𝑤 ∈ (0(,]1)) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
10425, 103sylbi 205 . . . 4 (𝑤 ∈ (0[,]1) → (𝑧 ∈ (0[,]1) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))))
105104imp 443 . . 3 ((𝑤 ∈ (0[,]1) ∧ 𝑧 ∈ (0[,]1)) → (𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))
106105rgen2a 2959 . 2 𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧))
107 soisoi 6456 . 2 ((( < Or (0[,]1) ∧ < Po (0[,]+∞)) ∧ (𝐹:(0[,]1)–onto→(0[,]+∞) ∧ ∀𝑤 ∈ (0[,]1)∀𝑧 ∈ (0[,]1)(𝑤 < 𝑧 → (𝐹𝑤) < (𝐹𝑧)))) → 𝐹 Isom < , < ((0[,]1), (0[,]+∞)))
1084, 11, 16, 106, 107mp4an 704 1 𝐹 Isom < , < ((0[,]1), (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wral 2895  cun 3537  wss 3539  ifcif 4035  {csn 4124   class class class wbr 4577  cmpt 4637   Po wpo 4947   Or wor 4948  ccnv 5027  ontowfo 5788  1-1-ontowf1o 5789  cfv 5790   Isom wiso 5791  (class class class)co 6527  cr 9791  0cc0 9792  1c1 9793  +∞cpnf 9927  *cxr 9929   < clt 9930  cle 9931  -cneg 10118  +crp 11664  (,)cioo 12002  (,]cioc 12003  [,]cicc 12005  expce 14577  logclog 24022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-iin 4452  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6772  df-om 6935  df-1st 7036  df-2nd 7037  df-supp 7160  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-2o 7425  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-ixp 7772  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-fsupp 8136  df-fi 8177  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-4 10928  df-5 10929  df-6 10930  df-7 10931  df-8 10932  df-9 10933  df-n0 11140  df-z 11211  df-dec 11326  df-uz 11520  df-q 11621  df-rp 11665  df-xneg 11778  df-xadd 11779  df-xmul 11780  df-ioo 12006  df-ioc 12007  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-fl 12410  df-mod 12486  df-seq 12619  df-exp 12678  df-fac 12878  df-bc 12907  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211  df-ef 14583  df-sin 14585  df-cos 14586  df-pi 14588  df-struct 15643  df-ndx 15644  df-slot 15645  df-base 15646  df-sets 15647  df-ress 15648  df-plusg 15727  df-mulr 15728  df-starv 15729  df-sca 15730  df-vsca 15731  df-ip 15732  df-tset 15733  df-ple 15734  df-ds 15737  df-unif 15738  df-hom 15739  df-cco 15740  df-rest 15852  df-topn 15853  df-0g 15871  df-gsum 15872  df-topgen 15873  df-pt 15874  df-prds 15877  df-xrs 15931  df-qtop 15936  df-imas 15937  df-xps 15939  df-mre 16015  df-mrc 16016  df-acs 16018  df-mgm 17011  df-sgrp 17053  df-mnd 17064  df-submnd 17105  df-mulg 17310  df-cntz 17519  df-cmn 17964  df-psmet 19505  df-xmet 19506  df-met 19507  df-bl 19508  df-mopn 19509  df-fbas 19510  df-fg 19511  df-cnfld 19514  df-top 20463  df-bases 20464  df-topon 20465  df-topsp 20466  df-cld 20575  df-ntr 20576  df-cls 20577  df-nei 20654  df-lp 20692  df-perf 20693  df-cn 20783  df-cnp 20784  df-haus 20871  df-tx 21117  df-hmeo 21310  df-fil 21402  df-fm 21494  df-flim 21495  df-flf 21496  df-xms 21876  df-ms 21877  df-tms 21878  df-cncf 22420  df-limc 23353  df-dv 23354  df-log 24024
This theorem is referenced by:  xrge0iifhmeo  29116
  Copyright terms: Public domain W3C validator