Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0infss Structured version   Visualization version   GIF version

Theorem xrge0infss 29366
 Description: Any subset of nonnegative extended reals has an infimum. (Contributed by Thierry Arnoux, 16-Sep-2019.) (Revised by AV, 4-Oct-2020.)
Assertion
Ref Expression
xrge0infss (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrge0infss
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 ssel2 3578 . . . . . . 7 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑦𝐴) → 𝑦 ∈ (0[,]+∞))
2 0xr 10030 . . . . . . . . 9 0 ∈ ℝ*
3 pnfxr 10036 . . . . . . . . 9 +∞ ∈ ℝ*
4 iccgelb 12172 . . . . . . . . 9 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ (0[,]+∞)) → 0 ≤ 𝑦)
52, 3, 4mp3an12 1411 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → 0 ≤ 𝑦)
6 iccssxr 12198 . . . . . . . . . 10 (0[,]+∞) ⊆ ℝ*
76sseli 3579 . . . . . . . . 9 (𝑦 ∈ (0[,]+∞) → 𝑦 ∈ ℝ*)
8 xrlenlt 10047 . . . . . . . . 9 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
92, 7, 8sylancr 694 . . . . . . . 8 (𝑦 ∈ (0[,]+∞) → (0 ≤ 𝑦 ↔ ¬ 𝑦 < 0))
105, 9mpbid 222 . . . . . . 7 (𝑦 ∈ (0[,]+∞) → ¬ 𝑦 < 0)
111, 10syl 17 . . . . . 6 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑦𝐴) → ¬ 𝑦 < 0)
1211ralrimiva 2960 . . . . 5 (𝐴 ⊆ (0[,]+∞) → ∀𝑦𝐴 ¬ 𝑦 < 0)
1312ad3antrrr 765 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦𝐴 ¬ 𝑦 < 0)
14 ssralv 3645 . . . . . . . . . 10 ((0[,]+∞) ⊆ ℝ* → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
156, 14ax-mp 5 . . . . . . . . 9 (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
16 simplll 797 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 ∈ ℝ*)
172a1i 11 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 0 ∈ ℝ*)
18 simplr 791 . . . . . . . . . . . . . 14 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑦 ∈ (0[,]+∞))
196, 18sseldi 3581 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑦 ∈ ℝ*)
20 simpllr 798 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 ≤ 0)
21 simpr 477 . . . . . . . . . . . . 13 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 0 < 𝑦)
2216, 17, 19, 20, 21xrlelttrd 11935 . . . . . . . . . . . 12 ((((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) ∧ 0 < 𝑦) → 𝑤 < 𝑦)
2322ex 450 . . . . . . . . . . 11 (((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) → (0 < 𝑦𝑤 < 𝑦))
2423imim1d 82 . . . . . . . . . 10 (((𝑤 ∈ ℝ*𝑤 ≤ 0) ∧ 𝑦 ∈ (0[,]+∞)) → ((𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → (0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2524ralimdva 2956 . . . . . . . . 9 ((𝑤 ∈ ℝ*𝑤 ≤ 0) → (∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2615, 25syl5 34 . . . . . . . 8 ((𝑤 ∈ ℝ*𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2726adantll 749 . . . . . . 7 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
2827imp 445 . . . . . 6 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
2928adantrl 751 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ 𝑤 ≤ 0) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
3029an32s 845 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))
31 0e0iccpnf 12225 . . . . 5 0 ∈ (0[,]+∞)
32 breq2 4617 . . . . . . . . 9 (𝑥 = 0 → (𝑦 < 𝑥𝑦 < 0))
3332notbid 308 . . . . . . . 8 (𝑥 = 0 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 0))
3433ralbidv 2980 . . . . . . 7 (𝑥 = 0 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 0))
35 breq1 4616 . . . . . . . . 9 (𝑥 = 0 → (𝑥 < 𝑦 ↔ 0 < 𝑦))
3635imbi1d 331 . . . . . . . 8 (𝑥 = 0 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3736ralbidv 2980 . . . . . . 7 (𝑥 = 0 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
3834, 37anbi12d 746 . . . . . 6 (𝑥 = 0 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
3938rspcev 3295 . . . . 5 ((0 ∈ (0[,]+∞) ∧ (∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4031, 39mpan 705 . . . 4 ((∀𝑦𝐴 ¬ 𝑦 < 0 ∧ ∀𝑦 ∈ (0[,]+∞)(0 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4113, 30, 40syl2anc 692 . . 3 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 𝑤 ≤ 0) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
42 simpllr 798 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ ℝ*)
43 simpr 477 . . . . 5 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 0 ≤ 𝑤)
44 elxrge0 12223 . . . . 5 (𝑤 ∈ (0[,]+∞) ↔ (𝑤 ∈ ℝ* ∧ 0 ≤ 𝑤))
4542, 43, 44sylanbrc 697 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → 𝑤 ∈ (0[,]+∞))
4615a1i 11 . . . . . . . 8 (𝐴 ⊆ (0[,]+∞) → (∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
4746anim2d 588 . . . . . . 7 (𝐴 ⊆ (0[,]+∞) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4847adantr 481 . . . . . 6 ((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) → ((∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
4948imp 445 . . . . 5 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5049adantr 481 . . . 4 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
51 breq2 4617 . . . . . . . 8 (𝑥 = 𝑤 → (𝑦 < 𝑥𝑦 < 𝑤))
5251notbid 308 . . . . . . 7 (𝑥 = 𝑤 → (¬ 𝑦 < 𝑥 ↔ ¬ 𝑦 < 𝑤))
5352ralbidv 2980 . . . . . 6 (𝑥 = 𝑤 → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ↔ ∀𝑦𝐴 ¬ 𝑦 < 𝑤))
54 breq1 4616 . . . . . . . 8 (𝑥 = 𝑤 → (𝑥 < 𝑦𝑤 < 𝑦))
5554imbi1d 331 . . . . . . 7 (𝑥 = 𝑤 → ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5655ralbidv 2980 . . . . . 6 (𝑥 = 𝑤 → (∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) ↔ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5753, 56anbi12d 746 . . . . 5 (𝑥 = 𝑤 → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) ↔ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))))
5857rspcev 3295 . . . 4 ((𝑤 ∈ (0[,]+∞) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
5945, 50, 58syl2anc 692 . . 3 ((((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) ∧ 0 ≤ 𝑤) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
60 simplr 791 . . . 4 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → 𝑤 ∈ ℝ*)
612a1i 11 . . . 4 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → 0 ∈ ℝ*)
62 xrletri 11928 . . . 4 ((𝑤 ∈ ℝ* ∧ 0 ∈ ℝ*) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤))
6360, 61, 62syl2anc 692 . . 3 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → (𝑤 ≤ 0 ∨ 0 ≤ 𝑤))
6441, 59, 63mpjaodan 826 . 2 (((𝐴 ⊆ (0[,]+∞) ∧ 𝑤 ∈ ℝ*) ∧ (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦))) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
65 sstr 3591 . . . 4 ((𝐴 ⊆ (0[,]+∞) ∧ (0[,]+∞) ⊆ ℝ*) → 𝐴 ⊆ ℝ*)
666, 65mpan2 706 . . 3 (𝐴 ⊆ (0[,]+∞) → 𝐴 ⊆ ℝ*)
67 xrinfmss 12083 . . 3 (𝐴 ⊆ ℝ* → ∃𝑤 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
6866, 67syl 17 . 2 (𝐴 ⊆ (0[,]+∞) → ∃𝑤 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑤 ∧ ∀𝑦 ∈ ℝ* (𝑤 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
6964, 68r19.29a 3071 1 (𝐴 ⊆ (0[,]+∞) → ∃𝑥 ∈ (0[,]+∞)(∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ (0[,]+∞)(𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∃wrex 2908   ⊆ wss 3555   class class class wbr 4613  (class class class)co 6604  0cc0 9880  +∞cpnf 10015  ℝ*cxr 10017   < clt 10018   ≤ cle 10019  [,]cicc 12120 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-icc 12124 This theorem is referenced by:  xrge0infssd  29367  infxrge0lb  29370  infxrge0glb  29371  infxrge0gelb  29372  omsf  30136  omssubaddlem  30139  omssubadd  30140
 Copyright terms: Public domain W3C validator