Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0pluscn Structured version   Visualization version   GIF version

Theorem xrge0pluscn 29786
Description: The addition operation of the extended nonnegative real numbers monoid is continuous. (Contributed by Thierry Arnoux, 24-Mar-2017.)
Hypotheses
Ref Expression
xrge0iifhmeo.1 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
xrge0iifhmeo.k 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
xrge0pluscn.1 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
Assertion
Ref Expression
xrge0pluscn + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Distinct variable group:   𝑥,𝐹
Allowed substitution hints:   + (𝑥)   𝐽(𝑥)

Proof of Theorem xrge0pluscn
Dummy variables 𝑦 𝑢 𝑣 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0iifhmeo.1 . . 3 𝐹 = (𝑥 ∈ (0[,]1) ↦ if(𝑥 = 0, +∞, -(log‘𝑥)))
2 xrge0iifhmeo.k . . 3 𝐽 = ((ordTop‘ ≤ ) ↾t (0[,]+∞))
31, 2xrge0iifhmeo 29782 . 2 𝐹 ∈ (IIHomeo𝐽)
4 unitsscn 29742 . . . . 5 (0[,]1) ⊆ ℂ
5 xpss12 5191 . . . . 5 (((0[,]1) ⊆ ℂ ∧ (0[,]1) ⊆ ℂ) → ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
64, 4, 5mp2an 707 . . . 4 ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)
7 ax-mulf 9967 . . . . 5 · :(ℂ × ℂ)⟶ℂ
8 ffn 6007 . . . . 5 ( · :(ℂ × ℂ)⟶ℂ → · Fn (ℂ × ℂ))
9 fnssresb 5966 . . . . 5 ( · Fn (ℂ × ℂ) → (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ)))
107, 8, 9mp2b 10 . . . 4 (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ↔ ((0[,]1) × (0[,]1)) ⊆ (ℂ × ℂ))
116, 10mpbir 221 . . 3 ( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1))
12 ovres 6760 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) = (𝑢 · 𝑣))
13 iimulcl 22655 . . . . 5 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) ∈ (0[,]1))
1412, 13eqeltrd 2698 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1))
1514rgen2a 2972 . . 3 𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)
16 ffnov 6724 . . 3 (( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1) ↔ (( · ↾ ((0[,]1) × (0[,]1))) Fn ((0[,]1) × (0[,]1)) ∧ ∀𝑢 ∈ (0[,]1)∀𝑣 ∈ (0[,]1)(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣) ∈ (0[,]1)))
1711, 15, 16mpbir2an 954 . 2 ( · ↾ ((0[,]1) × (0[,]1))):((0[,]1) × (0[,]1))⟶(0[,]1)
18 iccssxr 12205 . . . . . 6 (0[,]+∞) ⊆ ℝ*
19 xpss12 5191 . . . . . 6 (((0[,]+∞) ⊆ ℝ* ∧ (0[,]+∞) ⊆ ℝ*) → ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2018, 18, 19mp2an 707 . . . . 5 ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)
21 xaddf 12005 . . . . . 6 +𝑒 :(ℝ* × ℝ*)⟶ℝ*
22 ffn 6007 . . . . . 6 ( +𝑒 :(ℝ* × ℝ*)⟶ℝ* → +𝑒 Fn (ℝ* × ℝ*))
23 fnssresb 5966 . . . . . 6 ( +𝑒 Fn (ℝ* × ℝ*) → (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*)))
2421, 22, 23mp2b 10 . . . . 5 (( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)) ↔ ((0[,]+∞) × (0[,]+∞)) ⊆ (ℝ* × ℝ*))
2520, 24mpbir 221 . . . 4 ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞))
26 xrge0pluscn.1 . . . . 5 + = ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))
2726fneq1i 5948 . . . 4 ( + Fn ((0[,]+∞) × (0[,]+∞)) ↔ ( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞))) Fn ((0[,]+∞) × (0[,]+∞)))
2825, 27mpbir 221 . . 3 + Fn ((0[,]+∞) × (0[,]+∞))
2926oveqi 6623 . . . . 5 (𝑎 + 𝑏) = (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏)
30 ovres 6760 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) = (𝑎 +𝑒 𝑏))
31 ge0xaddcl 12235 . . . . . 6 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 +𝑒 𝑏) ∈ (0[,]+∞))
3230, 31eqeltrd 2698 . . . . 5 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))𝑏) ∈ (0[,]+∞))
3329, 32syl5eqel 2702 . . . 4 ((𝑎 ∈ (0[,]+∞) ∧ 𝑏 ∈ (0[,]+∞)) → (𝑎 + 𝑏) ∈ (0[,]+∞))
3433rgen2a 2972 . . 3 𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)
35 ffnov 6724 . . 3 ( + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞) ↔ ( + Fn ((0[,]+∞) × (0[,]+∞)) ∧ ∀𝑎 ∈ (0[,]+∞)∀𝑏 ∈ (0[,]+∞)(𝑎 + 𝑏) ∈ (0[,]+∞)))
3628, 34, 35mpbir2an 954 . 2 + :((0[,]+∞) × (0[,]+∞))⟶(0[,]+∞)
37 iitopon 22601 . 2 II ∈ (TopOn‘(0[,]1))
38 letopon 20928 . . . 4 (ordTop‘ ≤ ) ∈ (TopOn‘ℝ*)
39 resttopon 20884 . . . 4 (((ordTop‘ ≤ ) ∈ (TopOn‘ℝ*) ∧ (0[,]+∞) ⊆ ℝ*) → ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞)))
4038, 18, 39mp2an 707 . . 3 ((ordTop‘ ≤ ) ↾t (0[,]+∞)) ∈ (TopOn‘(0[,]+∞))
412, 40eqeltri 2694 . 2 𝐽 ∈ (TopOn‘(0[,]+∞))
4226oveqi 6623 . . . 4 ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣))
431xrge0iifcnv 29779 . . . . . . . 8 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) ∧ 𝐹 = (𝑦 ∈ (0[,]+∞) ↦ if(𝑦 = +∞, 0, (exp‘-𝑦))))
4443simpli 474 . . . . . . 7 𝐹:(0[,]1)–1-1-onto→(0[,]+∞)
45 f1of 6099 . . . . . . 7 (𝐹:(0[,]1)–1-1-onto→(0[,]+∞) → 𝐹:(0[,]1)⟶(0[,]+∞))
4644, 45ax-mp 5 . . . . . 6 𝐹:(0[,]1)⟶(0[,]+∞)
4746ffvelrni 6319 . . . . 5 (𝑢 ∈ (0[,]1) → (𝐹𝑢) ∈ (0[,]+∞))
4846ffvelrni 6319 . . . . 5 (𝑣 ∈ (0[,]1) → (𝐹𝑣) ∈ (0[,]+∞))
49 ovres 6760 . . . . 5 (((𝐹𝑢) ∈ (0[,]+∞) ∧ (𝐹𝑣) ∈ (0[,]+∞)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5047, 48, 49syl2an 494 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢)( +𝑒 ↾ ((0[,]+∞) × (0[,]+∞)))(𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5142, 50syl5eq 2667 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → ((𝐹𝑢) + (𝐹𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
521, 2xrge0iifhom 29783 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = ((𝐹𝑢) +𝑒 (𝐹𝑣)))
5312eqcomd 2627 . . . 4 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝑢 · 𝑣) = (𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣))
5453fveq2d 6157 . . 3 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢 · 𝑣)) = (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)))
5551, 52, 543eqtr2rd 2662 . 2 ((𝑢 ∈ (0[,]1) ∧ 𝑣 ∈ (0[,]1)) → (𝐹‘(𝑢( · ↾ ((0[,]1) × (0[,]1)))𝑣)) = ((𝐹𝑢) + (𝐹𝑣)))
56 eqid 2621 . . . 4 ((mulGrp‘ℂfld) ↾s (0[,]1)) = ((mulGrp‘ℂfld) ↾s (0[,]1))
5756iistmd 29748 . . 3 ((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd
58 cnfldex 19677 . . . . . 6 fld ∈ V
59 ovex 6638 . . . . . 6 (0[,]1) ∈ V
60 eqid 2621 . . . . . . 7 (ℂflds (0[,]1)) = (ℂflds (0[,]1))
61 eqid 2621 . . . . . . 7 (mulGrp‘ℂfld) = (mulGrp‘ℂfld)
6260, 61mgpress 18428 . . . . . 6 ((ℂfld ∈ V ∧ (0[,]1) ∈ V) → ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1))))
6358, 59, 62mp2an 707 . . . . 5 ((mulGrp‘ℂfld) ↾s (0[,]1)) = (mulGrp‘(ℂflds (0[,]1)))
6460dfii4 22606 . . . . 5 II = (TopOpen‘(ℂflds (0[,]1)))
6563, 64mgptopn 18426 . . . 4 II = (TopOpen‘((mulGrp‘ℂfld) ↾s (0[,]1)))
66 cnfldbas 19678 . . . . . . 7 ℂ = (Base‘ℂfld)
6761, 66mgpbas 18423 . . . . . 6 ℂ = (Base‘(mulGrp‘ℂfld))
68 cnfldmul 19680 . . . . . . 7 · = (.r‘ℂfld)
6961, 68mgpplusg 18421 . . . . . 6 · = (+g‘(mulGrp‘ℂfld))
707, 8ax-mp 5 . . . . . 6 · Fn (ℂ × ℂ)
7167, 56, 69, 70, 4ressplusf 29453 . . . . 5 (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1))) = ( · ↾ ((0[,]1) × (0[,]1)))
7271eqcomi 2630 . . . 4 ( · ↾ ((0[,]1) × (0[,]1))) = (+𝑓‘((mulGrp‘ℂfld) ↾s (0[,]1)))
7365, 72tmdcn 21806 . . 3 (((mulGrp‘ℂfld) ↾s (0[,]1)) ∈ TopMnd → ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II))
7457, 73ax-mp 5 . 2 ( · ↾ ((0[,]1) × (0[,]1))) ∈ ((II ×t II) Cn II)
753, 17, 36, 37, 41, 55, 74mndpluscn 29772 1 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  wss 3559  ifcif 4063  cmpt 4678   × cxp 5077  ccnv 5078  cres 5081   Fn wfn 5847  wf 5848  1-1-ontowf1o 5851  cfv 5852  (class class class)co 6610  cc 9885  0cc0 9887  1c1 9888   · cmul 9892  +∞cpnf 10022  *cxr 10024  cle 10026  -cneg 10218   +𝑒 cxad 11895  [,]cicc 12127  expce 14724  s cress 15789  t crest 16009  ordTopcordt 16087  +𝑓cplusf 17167  mulGrpcmgp 18417  fldccnfld 19674  TopOnctopon 20643   Cn ccn 20947   ×t ctx 21282  TopMndctmd 21793  IIcii 22597  logclog 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8489  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964  ax-pre-sup 9965  ax-addf 9966  ax-mulf 9967
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7860  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-fsupp 8227  df-fi 8268  df-sup 8299  df-inf 8300  df-oi 8366  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-div 10636  df-nn 10972  df-2 11030  df-3 11031  df-4 11032  df-5 11033  df-6 11034  df-7 11035  df-8 11036  df-9 11037  df-n0 11244  df-z 11329  df-dec 11445  df-uz 11639  df-q 11740  df-rp 11784  df-xneg 11897  df-xadd 11898  df-xmul 11899  df-ioo 12128  df-ioc 12129  df-ico 12130  df-icc 12131  df-fz 12276  df-fzo 12414  df-fl 12540  df-mod 12616  df-seq 12749  df-exp 12808  df-fac 13008  df-bc 13037  df-hash 13065  df-shft 13748  df-cj 13780  df-re 13781  df-im 13782  df-sqrt 13916  df-abs 13917  df-limsup 14143  df-clim 14160  df-rlim 14161  df-sum 14358  df-ef 14730  df-sin 14732  df-cos 14733  df-pi 14735  df-struct 15790  df-ndx 15791  df-slot 15792  df-base 15793  df-sets 15794  df-ress 15795  df-plusg 15882  df-mulr 15883  df-starv 15884  df-sca 15885  df-vsca 15886  df-ip 15887  df-tset 15888  df-ple 15889  df-ds 15892  df-unif 15893  df-hom 15894  df-cco 15895  df-rest 16011  df-topn 16012  df-0g 16030  df-gsum 16031  df-topgen 16032  df-pt 16033  df-prds 16036  df-ordt 16089  df-xrs 16090  df-qtop 16095  df-imas 16096  df-xps 16098  df-mre 16174  df-mrc 16175  df-acs 16177  df-ps 17128  df-tsr 17129  df-plusf 17169  df-mgm 17170  df-sgrp 17212  df-mnd 17223  df-submnd 17264  df-grp 17353  df-minusg 17354  df-sbg 17355  df-mulg 17469  df-subg 17519  df-cntz 17678  df-cmn 18123  df-abl 18124  df-mgp 18418  df-ur 18430  df-ring 18477  df-cring 18478  df-subrg 18706  df-abv 18745  df-lmod 18793  df-scaf 18794  df-sra 19100  df-rgmod 19101  df-psmet 19666  df-xmet 19667  df-met 19668  df-bl 19669  df-mopn 19670  df-fbas 19671  df-fg 19672  df-cnfld 19675  df-top 20627  df-topon 20644  df-topsp 20657  df-bases 20670  df-cld 20742  df-ntr 20743  df-cls 20744  df-nei 20821  df-lp 20859  df-perf 20860  df-cn 20950  df-cnp 20951  df-haus 21038  df-tx 21284  df-hmeo 21477  df-fil 21569  df-fm 21661  df-flim 21662  df-flf 21663  df-tmd 21795  df-tgp 21796  df-trg 21882  df-xms 22044  df-ms 22045  df-tms 22046  df-nm 22306  df-ngp 22307  df-nrg 22309  df-nlm 22310  df-ii 22599  df-cncf 22600  df-limc 23549  df-dv 23550  df-log 24220
This theorem is referenced by:  xrge0tmdOLD  29791
  Copyright terms: Public domain W3C validator