Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrge0slmod Structured version   Visualization version   GIF version

Theorem xrge0slmod 29972
Description: The extended nonnegative real numbers form a semiring left module. One could also have used subringAlg to get the same structure. (Contributed by Thierry Arnoux, 6-Sep-2018.)
Hypotheses
Ref Expression
xrge0slmod.1 𝐺 = (ℝ*𝑠s (0[,]+∞))
xrge0slmod.2 𝑊 = (𝐺v (0[,)+∞))
Assertion
Ref Expression
xrge0slmod 𝑊 ∈ SLMod

Proof of Theorem xrge0slmod
Dummy variables 𝑟 𝑞 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrge0slmod.1 . . . 4 𝐺 = (ℝ*𝑠s (0[,]+∞))
2 xrge0cmn 19836 . . . 4 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
31, 2eqeltri 2726 . . 3 𝐺 ∈ CMnd
4 ovex 6718 . . . 4 (0[,)+∞) ∈ V
5 xrge0slmod.2 . . . . 5 𝑊 = (𝐺v (0[,)+∞))
65resvcmn 29966 . . . 4 ((0[,)+∞) ∈ V → (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd))
74, 6ax-mp 5 . . 3 (𝐺 ∈ CMnd ↔ 𝑊 ∈ CMnd)
83, 7mpbi 220 . 2 𝑊 ∈ CMnd
9 rge0srg 19865 . 2 (ℂflds (0[,)+∞)) ∈ SRing
10 icossicc 12298 . . . . . . . 8 (0[,)+∞) ⊆ (0[,]+∞)
11 simplr 807 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,)+∞))
1210, 11sseldi 3634 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ (0[,]+∞))
13 simprr 811 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ (0[,]+∞))
14 ge0xmulcl 12325 . . . . . . 7 ((𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
1512, 13, 14syl2anc 694 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e 𝑤) ∈ (0[,]+∞))
16 simprl 809 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑥 ∈ (0[,]+∞))
17 xrge0adddi 29821 . . . . . . 7 ((𝑤 ∈ (0[,]+∞) ∧ 𝑥 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞)) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
1813, 16, 12, 17syl3anc 1366 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)))
19 rge0ssre 12318 . . . . . . . . . 10 (0[,)+∞) ⊆ ℝ
20 simpll 805 . . . . . . . . . 10 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,)+∞))
2119, 20sseldi 3634 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ)
2219, 11sseldi 3634 . . . . . . . . 9 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ)
23 rexadd 12101 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2421, 22, 23syl2anc 694 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 +𝑒 𝑟) = (𝑞 + 𝑟))
2524oveq1d 6705 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 + 𝑟) ·e 𝑤))
2610, 20sseldi 3634 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ (0[,]+∞))
27 xrge0adddir 29820 . . . . . . . 8 ((𝑞 ∈ (0[,]+∞) ∧ 𝑟 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞)) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2826, 12, 13, 27syl3anc 1366 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 +𝑒 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
2925, 28eqtr3d 2687 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤)))
3015, 18, 293jca 1261 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))))
31 rexmul 12139 . . . . . . . . 9 ((𝑞 ∈ ℝ ∧ 𝑟 ∈ ℝ) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3221, 22, 31syl2anc 694 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (𝑞 ·e 𝑟) = (𝑞 · 𝑟))
3332oveq1d 6705 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = ((𝑞 · 𝑟) ·e 𝑤))
3421rexrd 10127 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑞 ∈ ℝ*)
3522rexrd 10127 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑟 ∈ ℝ*)
36 iccssxr 12294 . . . . . . . . 9 (0[,]+∞) ⊆ ℝ*
3736, 13sseldi 3634 . . . . . . . 8 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → 𝑤 ∈ ℝ*)
38 xmulass 12155 . . . . . . . 8 ((𝑞 ∈ ℝ*𝑟 ∈ ℝ*𝑤 ∈ ℝ*) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
3934, 35, 37, 38syl3anc 1366 . . . . . . 7 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 ·e 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
4033, 39eqtr3d 2687 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → ((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)))
41 xmulid2 12148 . . . . . . 7 (𝑤 ∈ ℝ* → (1 ·e 𝑤) = 𝑤)
4237, 41syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (1 ·e 𝑤) = 𝑤)
43 xmul02 12136 . . . . . . 7 (𝑤 ∈ ℝ* → (0 ·e 𝑤) = 0)
4437, 43syl 17 . . . . . 6 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (0 ·e 𝑤) = 0)
4540, 42, 443jca 1261 . . . . 5 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
4630, 45jca 553 . . . 4 (((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) ∧ (𝑥 ∈ (0[,]+∞) ∧ 𝑤 ∈ (0[,]+∞))) → (((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4746ralrimivva 3000 . . 3 ((𝑞 ∈ (0[,)+∞) ∧ 𝑟 ∈ (0[,)+∞)) → ∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0)))
4847rgen2a 3006 . 2 𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))
49 xrge0base 29813 . . . . . 6 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
501fveq2i 6232 . . . . . 6 (Base‘𝐺) = (Base‘(ℝ*𝑠s (0[,]+∞)))
5149, 50eqtr4i 2676 . . . . 5 (0[,]+∞) = (Base‘𝐺)
525, 51resvbas 29960 . . . 4 ((0[,)+∞) ∈ V → (0[,]+∞) = (Base‘𝑊))
534, 52ax-mp 5 . . 3 (0[,]+∞) = (Base‘𝑊)
54 xrge0plusg 29815 . . . . . 6 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
551fveq2i 6232 . . . . . 6 (+g𝐺) = (+g‘(ℝ*𝑠s (0[,]+∞)))
5654, 55eqtr4i 2676 . . . . 5 +𝑒 = (+g𝐺)
575, 56resvplusg 29961 . . . 4 ((0[,)+∞) ∈ V → +𝑒 = (+g𝑊))
584, 57ax-mp 5 . . 3 +𝑒 = (+g𝑊)
59 ovex 6718 . . . . . 6 (0[,]+∞) ∈ V
60 ax-xrsvsca 29802 . . . . . . 7 ·e = ( ·𝑠 ‘ℝ*𝑠)
611, 60ressvsca 16079 . . . . . 6 ((0[,]+∞) ∈ V → ·e = ( ·𝑠𝐺))
6259, 61ax-mp 5 . . . . 5 ·e = ( ·𝑠𝐺)
635, 62resvvsca 29962 . . . 4 ((0[,)+∞) ∈ V → ·e = ( ·𝑠𝑊))
644, 63ax-mp 5 . . 3 ·e = ( ·𝑠𝑊)
65 xrge00 29814 . . . . . 6 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
661fveq2i 6232 . . . . . 6 (0g𝐺) = (0g‘(ℝ*𝑠s (0[,]+∞)))
6765, 66eqtr4i 2676 . . . . 5 0 = (0g𝐺)
685, 67resv0g 29964 . . . 4 ((0[,)+∞) ∈ V → 0 = (0g𝑊))
694, 68ax-mp 5 . . 3 0 = (0g𝑊)
70 df-refld 19999 . . . . . 6 fld = (ℂflds ℝ)
7170oveq1i 6700 . . . . 5 (ℝflds (0[,)+∞)) = ((ℂflds ℝ) ↾s (0[,)+∞))
72 reex 10065 . . . . . 6 ℝ ∈ V
73 ressress 15985 . . . . . 6 ((ℝ ∈ V ∧ (0[,)+∞) ∈ V) → ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞))))
7472, 4, 73mp2an 708 . . . . 5 ((ℂflds ℝ) ↾s (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
7571, 74eqtri 2673 . . . 4 (ℝflds (0[,)+∞)) = (ℂflds (ℝ ∩ (0[,)+∞)))
76 ax-xrssca 29801 . . . . . . . 8 fld = (Scalar‘ℝ*𝑠)
771, 76resssca 16078 . . . . . . 7 ((0[,]+∞) ∈ V → ℝfld = (Scalar‘𝐺))
7859, 77ax-mp 5 . . . . . 6 fld = (Scalar‘𝐺)
79 rebase 20000 . . . . . 6 ℝ = (Base‘ℝfld)
805, 78, 79resvsca 29958 . . . . 5 ((0[,)+∞) ∈ V → (ℝflds (0[,)+∞)) = (Scalar‘𝑊))
814, 80ax-mp 5 . . . 4 (ℝflds (0[,)+∞)) = (Scalar‘𝑊)
82 incom 3838 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (ℝ ∩ (0[,)+∞))
83 df-ss 3621 . . . . . . 7 ((0[,)+∞) ⊆ ℝ ↔ ((0[,)+∞) ∩ ℝ) = (0[,)+∞))
8419, 83mpbi 220 . . . . . 6 ((0[,)+∞) ∩ ℝ) = (0[,)+∞)
8582, 84eqtr3i 2675 . . . . 5 (ℝ ∩ (0[,)+∞)) = (0[,)+∞)
8685oveq2i 6701 . . . 4 (ℂflds (ℝ ∩ (0[,)+∞))) = (ℂflds (0[,)+∞))
8775, 81, 863eqtr3ri 2682 . . 3 (ℂflds (0[,)+∞)) = (Scalar‘𝑊)
88 ax-resscn 10031 . . . . 5 ℝ ⊆ ℂ
8919, 88sstri 3645 . . . 4 (0[,)+∞) ⊆ ℂ
90 eqid 2651 . . . . 5 (ℂflds (0[,)+∞)) = (ℂflds (0[,)+∞))
91 cnfldbas 19798 . . . . 5 ℂ = (Base‘ℂfld)
9290, 91ressbas2 15978 . . . 4 ((0[,)+∞) ⊆ ℂ → (0[,)+∞) = (Base‘(ℂflds (0[,)+∞))))
9389, 92ax-mp 5 . . 3 (0[,)+∞) = (Base‘(ℂflds (0[,)+∞)))
94 cnfldadd 19799 . . . . 5 + = (+g‘ℂfld)
9590, 94ressplusg 16040 . . . 4 ((0[,)+∞) ∈ V → + = (+g‘(ℂflds (0[,)+∞))))
964, 95ax-mp 5 . . 3 + = (+g‘(ℂflds (0[,)+∞)))
97 cnfldmul 19800 . . . . 5 · = (.r‘ℂfld)
9890, 97ressmulr 16053 . . . 4 ((0[,)+∞) ∈ V → · = (.r‘(ℂflds (0[,)+∞))))
994, 98ax-mp 5 . . 3 · = (.r‘(ℂflds (0[,)+∞)))
100 cndrng 19823 . . . . 5 fld ∈ DivRing
101 drngring 18802 . . . . 5 (ℂfld ∈ DivRing → ℂfld ∈ Ring)
102100, 101ax-mp 5 . . . 4 fld ∈ Ring
103 1re 10077 . . . . . 6 1 ∈ ℝ
104 0le1 10589 . . . . . 6 0 ≤ 1
105 ltpnf 11992 . . . . . . 7 (1 ∈ ℝ → 1 < +∞)
106103, 105ax-mp 5 . . . . . 6 1 < +∞
107103, 104, 1063pm3.2i 1259 . . . . 5 (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)
108 0re 10078 . . . . . 6 0 ∈ ℝ
109 pnfxr 10130 . . . . . 6 +∞ ∈ ℝ*
110 elico2 12275 . . . . . 6 ((0 ∈ ℝ ∧ +∞ ∈ ℝ*) → (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞)))
111108, 109, 110mp2an 708 . . . . 5 (1 ∈ (0[,)+∞) ↔ (1 ∈ ℝ ∧ 0 ≤ 1 ∧ 1 < +∞))
112107, 111mpbir 221 . . . 4 1 ∈ (0[,)+∞)
113 cnfld1 19819 . . . . 5 1 = (1r‘ℂfld)
11490, 91, 113ress1r 29917 . . . 4 ((ℂfld ∈ Ring ∧ 1 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 1 = (1r‘(ℂflds (0[,)+∞))))
115102, 112, 89, 114mp3an 1464 . . 3 1 = (1r‘(ℂflds (0[,)+∞)))
116 ringmnd 18602 . . . . 5 (ℂfld ∈ Ring → ℂfld ∈ Mnd)
117100, 101, 116mp2b 10 . . . 4 fld ∈ Mnd
118 0e0icopnf 12320 . . . 4 0 ∈ (0[,)+∞)
119 cnfld0 19818 . . . . 5 0 = (0g‘ℂfld)
12090, 91, 119ress0g 17366 . . . 4 ((ℂfld ∈ Mnd ∧ 0 ∈ (0[,)+∞) ∧ (0[,)+∞) ⊆ ℂ) → 0 = (0g‘(ℂflds (0[,)+∞))))
121117, 118, 89, 120mp3an 1464 . . 3 0 = (0g‘(ℂflds (0[,)+∞)))
12253, 58, 64, 69, 87, 93, 96, 99, 115, 121isslmd 29883 . 2 (𝑊 ∈ SLMod ↔ (𝑊 ∈ CMnd ∧ (ℂflds (0[,)+∞)) ∈ SRing ∧ ∀𝑞 ∈ (0[,)+∞)∀𝑟 ∈ (0[,)+∞)∀𝑥 ∈ (0[,]+∞)∀𝑤 ∈ (0[,]+∞)(((𝑟 ·e 𝑤) ∈ (0[,]+∞) ∧ (𝑟 ·e (𝑤 +𝑒 𝑥)) = ((𝑟 ·e 𝑤) +𝑒 (𝑟 ·e 𝑥)) ∧ ((𝑞 + 𝑟) ·e 𝑤) = ((𝑞 ·e 𝑤) +𝑒 (𝑟 ·e 𝑤))) ∧ (((𝑞 · 𝑟) ·e 𝑤) = (𝑞 ·e (𝑟 ·e 𝑤)) ∧ (1 ·e 𝑤) = 𝑤 ∧ (0 ·e 𝑤) = 0))))
1238, 9, 48, 122mpbir3an 1263 1 𝑊 ∈ SLMod
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383  w3a 1054   = wceq 1523  wcel 2030  wral 2941  Vcvv 3231  cin 3606  wss 3607   class class class wbr 4685  cfv 5926  (class class class)co 6690  cc 9972  cr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979  +∞cpnf 10109  *cxr 10111   < clt 10112  cle 10113   +𝑒 cxad 11982   ·e cxmu 11983  [,)cico 12215  [,]cicc 12216  Basecbs 15904  s cress 15905  +gcplusg 15988  .rcmulr 15989  Scalarcsca 15991   ·𝑠 cvsca 15992  0gc0g 16147  *𝑠cxrs 16207  Mndcmnd 17341  CMndccmn 18239  1rcur 18547  SRingcsrg 18551  Ringcrg 18593  DivRingcdr 18795  fldccnfld 19794  fldcrefld 19998  SLModcslmd 29881  v cresv 29952
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-addf 10053  ax-mulf 10054  ax-xrssca 29801  ax-xrsvsca 29802
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-tpos 7397  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-xneg 11984  df-xadd 11985  df-xmul 11986  df-ico 12219  df-icc 12220  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-starv 16003  df-sca 16004  df-vsca 16005  df-tset 16007  df-ple 16008  df-ds 16011  df-unif 16012  df-0g 16149  df-xrs 16209  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-submnd 17383  df-grp 17472  df-minusg 17473  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-cring 18596  df-oppr 18669  df-dvdsr 18687  df-unit 18688  df-invr 18718  df-dvr 18729  df-drng 18797  df-cnfld 19795  df-refld 19999  df-slmd 29882  df-resv 29953
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator