![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > xrgtnelicc | Structured version Visualization version GIF version |
Description: A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
xrgtnelicc.1 | ⊢ (𝜑 → 𝐴 ∈ ℝ*) |
xrgtnelicc.2 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
xrgtnelicc.3 | ⊢ (𝜑 → 𝐶 ∈ ℝ*) |
xrgtnelicc.4 | ⊢ (𝜑 → 𝐵 < 𝐶) |
Ref | Expression |
---|---|
xrgtnelicc | ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xrgtnelicc.4 | . . . 4 ⊢ (𝜑 → 𝐵 < 𝐶) | |
2 | xrgtnelicc.2 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
3 | xrgtnelicc.3 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ*) | |
4 | xrltnle 10143 | . . . . 5 ⊢ ((𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) | |
5 | 2, 3, 4 | syl2anc 694 | . . . 4 ⊢ (𝜑 → (𝐵 < 𝐶 ↔ ¬ 𝐶 ≤ 𝐵)) |
6 | 1, 5 | mpbid 222 | . . 3 ⊢ (𝜑 → ¬ 𝐶 ≤ 𝐵) |
7 | 6 | intnand 982 | . 2 ⊢ (𝜑 → ¬ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵)) |
8 | xrgtnelicc.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ ℝ*) | |
9 | elicc4 12278 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) | |
10 | 8, 2, 3, 9 | syl3anc 1366 | . 2 ⊢ (𝜑 → (𝐶 ∈ (𝐴[,]𝐵) ↔ (𝐴 ≤ 𝐶 ∧ 𝐶 ≤ 𝐵))) |
11 | 7, 10 | mtbird 314 | 1 ⊢ (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 (class class class)co 6690 ℝ*cxr 10111 < clt 10112 ≤ cle 10113 [,]cicc 12216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-iota 5889 df-fun 5928 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-xr 10116 df-le 10118 df-icc 12220 |
This theorem is referenced by: iccdificc 40084 |
Copyright terms: Public domain | W3C validator |