Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrhval Structured version   Visualization version   GIF version

Theorem xrhval 30036
Description: The value of the embedding from the extended real numbers into a complete lattice. (Contributed by Thierry Arnoux, 19-Feb-2018.)
Hypotheses
Ref Expression
xrhval.b 𝐵 = ((ℝHom‘𝑅) “ ℝ)
xrhval.l 𝐿 = (glb‘𝑅)
xrhval.u 𝑈 = (lub‘𝑅)
Assertion
Ref Expression
xrhval (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Distinct variable group:   𝑥,𝑅
Allowed substitution hints:   𝐵(𝑥)   𝑈(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem xrhval
Dummy variable 𝑟 is distinct from all other variables.
StepHypRef Expression
1 elex 3207 . 2 (𝑅𝑉𝑅 ∈ V)
2 fveq2 6178 . . . . . 6 (𝑟 = 𝑅 → (ℝHom‘𝑟) = (ℝHom‘𝑅))
32fveq1d 6180 . . . . 5 (𝑟 = 𝑅 → ((ℝHom‘𝑟)‘𝑥) = ((ℝHom‘𝑅)‘𝑥))
4 fveq2 6178 . . . . . . . 8 (𝑟 = 𝑅 → (lub‘𝑟) = (lub‘𝑅))
5 xrhval.u . . . . . . . 8 𝑈 = (lub‘𝑅)
64, 5syl6eqr 2672 . . . . . . 7 (𝑟 = 𝑅 → (lub‘𝑟) = 𝑈)
72imaeq1d 5453 . . . . . . . 8 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = ((ℝHom‘𝑅) “ ℝ))
8 xrhval.b . . . . . . . 8 𝐵 = ((ℝHom‘𝑅) “ ℝ)
97, 8syl6eqr 2672 . . . . . . 7 (𝑟 = 𝑅 → ((ℝHom‘𝑟) “ ℝ) = 𝐵)
106, 9fveq12d 6184 . . . . . 6 (𝑟 = 𝑅 → ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝑈𝐵))
11 fveq2 6178 . . . . . . . 8 (𝑟 = 𝑅 → (glb‘𝑟) = (glb‘𝑅))
12 xrhval.l . . . . . . . 8 𝐿 = (glb‘𝑅)
1311, 12syl6eqr 2672 . . . . . . 7 (𝑟 = 𝑅 → (glb‘𝑟) = 𝐿)
1413, 9fveq12d 6184 . . . . . 6 (𝑟 = 𝑅 → ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)) = (𝐿𝐵))
1510, 14ifeq12d 4097 . . . . 5 (𝑟 = 𝑅 → if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))) = if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))
163, 15ifeq12d 4097 . . . 4 (𝑟 = 𝑅 → if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ)))) = if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵))))
1716mpteq2dv 4736 . . 3 (𝑟 = 𝑅 → (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
18 df-xrh 30035 . . 3 *Hom = (𝑟 ∈ V ↦ (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑟)‘𝑥), if(𝑥 = +∞, ((lub‘𝑟)‘((ℝHom‘𝑟) “ ℝ)), ((glb‘𝑟)‘((ℝHom‘𝑟) “ ℝ))))))
19 xrex 11814 . . . 4 * ∈ V
2019mptex 6471 . . 3 (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))) ∈ V
2117, 18, 20fvmpt 6269 . 2 (𝑅 ∈ V → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
221, 21syl 17 1 (𝑅𝑉 → (ℝ*Hom‘𝑅) = (𝑥 ∈ ℝ* ↦ if(𝑥 ∈ ℝ, ((ℝHom‘𝑅)‘𝑥), if(𝑥 = +∞, (𝑈𝐵), (𝐿𝐵)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1481  wcel 1988  Vcvv 3195  ifcif 4077  cmpt 4720  cima 5107  cfv 5876  cr 9920  +∞cpnf 10056  *cxr 10058  lubclub 16923  glbcglb 16924  ℝHomcrrh 30011  *Homcxrh 30034
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-rep 4762  ax-sep 4772  ax-nul 4780  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-reu 2916  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-xr 10063  df-xrh 30035
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator