MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinf0 Structured version   Visualization version   GIF version

Theorem xrinf0 12721
Description: The infimum of the empty set under the extended reals is positive infinity. (Contributed by Mario Carneiro, 21-Apr-2015.) (Revised by AV, 5-Sep-2020.)
Assertion
Ref Expression
xrinf0 inf(∅, ℝ*, < ) = +∞

Proof of Theorem xrinf0
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrltso 12524 . . . 4 < Or ℝ*
21a1i 11 . . 3 (⊤ → < Or ℝ*)
3 pnfxr 10684 . . . 4 +∞ ∈ ℝ*
43a1i 11 . . 3 (⊤ → +∞ ∈ ℝ*)
5 noel 4295 . . . . 5 ¬ 𝑦 ∈ ∅
65pm2.21i 119 . . . 4 (𝑦 ∈ ∅ → ¬ 𝑦 < +∞)
76adantl 482 . . 3 ((⊤ ∧ 𝑦 ∈ ∅) → ¬ 𝑦 < +∞)
8 pnfnlt 12513 . . . . . 6 (𝑦 ∈ ℝ* → ¬ +∞ < 𝑦)
98pm2.21d 121 . . . . 5 (𝑦 ∈ ℝ* → (+∞ < 𝑦 → ∃𝑧 ∈ ∅ 𝑧 < 𝑦))
109imp 407 . . . 4 ((𝑦 ∈ ℝ* ∧ +∞ < 𝑦) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
1110adantl 482 . . 3 ((⊤ ∧ (𝑦 ∈ ℝ* ∧ +∞ < 𝑦)) → ∃𝑧 ∈ ∅ 𝑧 < 𝑦)
122, 4, 7, 11eqinfd 8938 . 2 (⊤ → inf(∅, ℝ*, < ) = +∞)
1312mptru 1535 1 inf(∅, ℝ*, < ) = +∞
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 396   = wceq 1528  wtru 1529  wcel 2105  wrex 3139  c0 4290   class class class wbr 5058   Or wor 5467  infcinf 8894  +∞cpnf 10661  *cxr 10663   < clt 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7450  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4833  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-po 5468  df-so 5469  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7103  df-er 8279  df-en 8499  df-dom 8500  df-sdom 8501  df-sup 8895  df-inf 8896  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669
This theorem is referenced by:  ramcl2lem  16335  infleinf  41520  infxrpnf  41601  supxrltinfxr  41604  supminfxr  41620
  Copyright terms: Public domain W3C validator