MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrinfmexpnf Structured version   Visualization version   GIF version

Theorem xrinfmexpnf 12087
Description: Adding plus infinity to a set does not affect the existence of its infimum. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrinfmexpnf (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrinfmexpnf
StepHypRef Expression
1 elun 3736 . . . . . 6 (𝑦 ∈ (𝐴 ∪ {+∞}) ↔ (𝑦𝐴𝑦 ∈ {+∞}))
2 simpr 477 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦𝐴 → ¬ 𝑦 < 𝑥))
3 velsn 4169 . . . . . . . . 9 (𝑦 ∈ {+∞} ↔ 𝑦 = +∞)
4 pnfnlt 11914 . . . . . . . . . 10 (𝑥 ∈ ℝ* → ¬ +∞ < 𝑥)
5 breq1 4621 . . . . . . . . . . 11 (𝑦 = +∞ → (𝑦 < 𝑥 ↔ +∞ < 𝑥))
65notbid 308 . . . . . . . . . 10 (𝑦 = +∞ → (¬ 𝑦 < 𝑥 ↔ ¬ +∞ < 𝑥))
74, 6syl5ibrcom 237 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑦 = +∞ → ¬ 𝑦 < 𝑥))
83, 7syl5bi 232 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑦 ∈ {+∞} → ¬ 𝑦 < 𝑥))
98adantr 481 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦 ∈ {+∞} → ¬ 𝑦 < 𝑥))
102, 9jaod 395 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → ((𝑦𝐴𝑦 ∈ {+∞}) → ¬ 𝑦 < 𝑥))
111, 10syl5bi 232 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑦 < 𝑥)) → (𝑦 ∈ (𝐴 ∪ {+∞}) → ¬ 𝑦 < 𝑥))
1211ex 450 . . . 4 (𝑥 ∈ ℝ* → ((𝑦𝐴 → ¬ 𝑦 < 𝑥) → (𝑦 ∈ (𝐴 ∪ {+∞}) → ¬ 𝑦 < 𝑥)))
1312ralimdv2 2956 . . 3 (𝑥 ∈ ℝ* → (∀𝑦𝐴 ¬ 𝑦 < 𝑥 → ∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥))
14 elun1 3763 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (𝐴 ∪ {+∞}))
1514anim1i 591 . . . . . . 7 ((𝑧𝐴𝑧 < 𝑦) → (𝑧 ∈ (𝐴 ∪ {+∞}) ∧ 𝑧 < 𝑦))
1615reximi2 3005 . . . . . 6 (∃𝑧𝐴 𝑧 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)
1716imim2i 16 . . . . 5 ((𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))
1817ralimi 2947 . . . 4 (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))
1918a1i 11 . . 3 (𝑥 ∈ ℝ* → (∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦) → ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
2013, 19anim12d 585 . 2 (𝑥 ∈ ℝ* → ((∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦))))
2120reximia 3004 1 (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧𝐴 𝑧 < 𝑦)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {+∞}) ¬ 𝑦 < 𝑥 ∧ ∀𝑦 ∈ ℝ* (𝑥 < 𝑦 → ∃𝑧 ∈ (𝐴 ∪ {+∞})𝑧 < 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  cun 3557  {csn 4153   class class class wbr 4618  +∞cpnf 10023  *cxr 10025   < clt 10026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-xp 5085  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031
This theorem is referenced by:  xrinfmss  12091
  Copyright terms: Public domain W3C validator