Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrltled Structured version   Visualization version   GIF version

Theorem xrltled 39800
Description: 'Less than' implies 'less than or equal to', for extended reals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrltled.a (𝜑𝐴 ∈ ℝ*)
xrltled.b (𝜑𝐵 ∈ ℝ*)
xrltled.altb (𝜑𝐴 < 𝐵)
Assertion
Ref Expression
xrltled (𝜑𝐴𝐵)

Proof of Theorem xrltled
StepHypRef Expression
1 xrltled.altb . 2 (𝜑𝐴 < 𝐵)
2 xrltled.a . . 3 (𝜑𝐴 ∈ ℝ*)
3 xrltled.b . . 3 (𝜑𝐵 ∈ ℝ*)
4 xrltle 12020 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵𝐴𝐵))
52, 3, 4syl2anc 694 . 2 (𝜑 → (𝐴 < 𝐵𝐴𝐵))
61, 5mpd 15 1 (𝜑𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2030   class class class wbr 4685  *cxr 10111   < clt 10112  cle 10113
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118
This theorem is referenced by:  supxrgere  39862  suplesup  39868  infrpge  39880  xralrple2  39883  xrralrecnnle  39915  xrralrecnnge  39926  supxrunb3  39936  unb2ltle  39955  xrpnf  40029  snunioo2  40049  snunioo1  40056  iccdifprioo  40060  iccdificc  40084  lptioo1  40182  limsupub  40254  limsuppnflem  40260  limsupre3lem  40282  xlimmnfvlem1  40376  xlimpnfvlem1  40380  fourierdlem46  40687  fourierdlem48  40689  fourierdlem49  40690  fourierdlem74  40715  fourierdlem75  40716  fourierdlem113  40754  ioorrnopnxrlem  40844  salexct2  40875  sge0iunmptlemre  40950  sge0rpcpnf  40956  sge0xaddlem1  40968  meaiuninc3v  41019  ovnsubaddlem1  41105  hoidmv1le  41129  hoidmvlelem5  41134  ovolval4lem1  41184  ovolval5lem1  41187  pimltmnf2  41232  pimgtpnf2  41238  preimageiingt  41251  preimaleiinlt  41252
  Copyright terms: Public domain W3C validator