MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltletr Structured version   Visualization version   GIF version

Theorem xrltletr 11820
Description: Transitive law for ordering on extended reals. (Contributed by NM, 19-Jan-2006.)
Assertion
Ref Expression
xrltletr ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))

Proof of Theorem xrltletr
StepHypRef Expression
1 xrleloe 11809 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
213adant1 1071 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 ↔ (𝐵 < 𝐶𝐵 = 𝐶)))
3 xrlttr 11805 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵 < 𝐶) → 𝐴 < 𝐶))
43expcomd 452 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 < 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
5 breq2 4578 . . . . . . 7 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
65biimpd 217 . . . . . 6 (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶))
76a1i 11 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 = 𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
84, 7jaod 393 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 < 𝐶𝐵 = 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
92, 8sylbid 228 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵𝐶 → (𝐴 < 𝐵𝐴 < 𝐶)))
109com23 83 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < 𝐵 → (𝐵𝐶𝐴 < 𝐶)))
1110impd 445 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < 𝐵𝐵𝐶) → 𝐴 < 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976   class class class wbr 4574  *cxr 9926   < clt 9927  cle 9928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-cnex 9845  ax-resscn 9846  ax-pre-lttri 9863  ax-pre-lttrn 9864
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-op 4128  df-uni 4364  df-br 4575  df-opab 4635  df-mpt 4636  df-id 4940  df-po 4946  df-so 4947  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933
This theorem is referenced by:  xrltletrd  11824  xrre2  11831  xrre3  11832  ge0gtmnf  11833  xrltmin  11843  supxrunb1  11974  iooss2  12035  ioc0  12046  iccssioo  12066  icossico  12067  icossioo  12088  ioossioo  12089  icoun  12120  ioojoin  12127  lecldbas  20772  mnfnei  20774  icopnfcld  22310  ovolicopnf  23013  voliunlem3  23041  volsup  23045  ioombl  23054  volivth  23095  itg2seq  23229  itg2monolem2  23238  dvfsumrlimge0  23511  dvfsumrlim2  23513  itgsubst  23530  abelth  23913  tanord1  24001  rlimcnp  24406  rlimcnp2  24407  dchrisum0lem2a  24920  pnt  25017  joiniooico  28729  esumfsup  29262  relowlssretop  32187  heicant  32414  itg2gt0cn  32435  asindmre  32465  ioounsn  36614  snunioo2  38379  nltle2tri  39744  frgrwopreglem2  41481
  Copyright terms: Public domain W3C validator