Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrltmin Structured version   Visualization version   GIF version

Theorem xrltmin 11964
 Description: Two ways of saying an extended real is less than the minimum of two others. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrltmin ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))

Proof of Theorem xrltmin
StepHypRef Expression
1 xrmin1 11959 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
213adant1 1077 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵)
3 simp1 1059 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ∈ ℝ*)
4 ifcl 4107 . . . . . 6 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
543adant1 1077 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*)
6 simp2 1060 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
7 xrltletr 11940 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵))
83, 5, 6, 7syl3anc 1323 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐵) → 𝐴 < 𝐵))
92, 8mpan2d 709 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → 𝐴 < 𝐵))
10 xrmin2 11960 . . . . 5 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
11103adant1 1077 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶)
12 xrltletr 11940 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐵𝐶, 𝐵, 𝐶) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶))
135, 12syld3an2 1370 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ∧ if(𝐵𝐶, 𝐵, 𝐶) ≤ 𝐶) → 𝐴 < 𝐶))
1411, 13mpan2d 709 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → 𝐴 < 𝐶))
159, 14jcad 555 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵𝐴 < 𝐶)))
16 breq2 4622 . . 3 (𝐵 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐵𝐴 < if(𝐵𝐶, 𝐵, 𝐶)))
17 breq2 4622 . . 3 (𝐶 = if(𝐵𝐶, 𝐵, 𝐶) → (𝐴 < 𝐶𝐴 < if(𝐵𝐶, 𝐵, 𝐶)))
1816, 17ifboth 4101 . 2 ((𝐴 < 𝐵𝐴 < 𝐶) → 𝐴 < if(𝐵𝐶, 𝐵, 𝐶))
1915, 18impbid1 215 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 < if(𝐵𝐶, 𝐵, 𝐶) ↔ (𝐴 < 𝐵𝐴 < 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   ∈ wcel 1987  ifcif 4063   class class class wbr 4618  ℝ*cxr 10025   < clt 10026   ≤ cle 10027 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-pre-lttri 9962  ax-pre-lttrn 9963 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032 This theorem is referenced by:  ltmin  11976  iooin  12159  blin  22149  lhop1  23698  ioondisj1  39157
 Copyright terms: Public domain W3C validator