Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrmaxlt Structured version   Visualization version   GIF version

Theorem xrmaxlt 12050
 Description: Two ways of saying the maximum of two extended reals is less than a third. (Contributed by NM, 7-Feb-2007.)
Assertion
Ref Expression
xrmaxlt ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))

Proof of Theorem xrmaxlt
StepHypRef Expression
1 xrmax1 12044 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
213adant3 1101 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴))
3 ifcl 4163 . . . . . . 7 ((𝐵 ∈ ℝ*𝐴 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
43ancoms 468 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
543adant3 1101 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*)
6 xrlelttr 12025 . . . . 5 ((𝐴 ∈ ℝ* ∧ if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) < 𝐶) → 𝐴 < 𝐶))
75, 6syld3an2 1413 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) < 𝐶) → 𝐴 < 𝐶))
82, 7mpand 711 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) < 𝐶𝐴 < 𝐶))
9 xrmax2 12045 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → 𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
1093adant3 1101 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴))
11 simp2 1082 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐵 ∈ ℝ*)
12 simp3 1083 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → 𝐶 ∈ ℝ*)
13 xrlelttr 12025 . . . . 5 ((𝐵 ∈ ℝ* ∧ if(𝐴𝐵, 𝐵, 𝐴) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) < 𝐶) → 𝐵 < 𝐶))
1411, 5, 12, 13syl3anc 1366 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐵 ≤ if(𝐴𝐵, 𝐵, 𝐴) ∧ if(𝐴𝐵, 𝐵, 𝐴) < 𝐶) → 𝐵 < 𝐶))
1510, 14mpand 711 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) < 𝐶𝐵 < 𝐶))
168, 15jcad 554 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) < 𝐶 → (𝐴 < 𝐶𝐵 < 𝐶)))
17 breq1 4688 . . . 4 (𝐵 = if(𝐴𝐵, 𝐵, 𝐴) → (𝐵 < 𝐶 ↔ if(𝐴𝐵, 𝐵, 𝐴) < 𝐶))
18 breq1 4688 . . . 4 (𝐴 = if(𝐴𝐵, 𝐵, 𝐴) → (𝐴 < 𝐶 ↔ if(𝐴𝐵, 𝐵, 𝐴) < 𝐶))
1917, 18ifboth 4157 . . 3 ((𝐵 < 𝐶𝐴 < 𝐶) → if(𝐴𝐵, 𝐵, 𝐴) < 𝐶)
2019ancoms 468 . 2 ((𝐴 < 𝐶𝐵 < 𝐶) → if(𝐴𝐵, 𝐵, 𝐴) < 𝐶)
2116, 20impbid1 215 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (if(𝐴𝐵, 𝐵, 𝐴) < 𝐶 ↔ (𝐴 < 𝐶𝐵 < 𝐶)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   ∈ wcel 2030  ifcif 4119   class class class wbr 4685  ℝ*cxr 10111   < clt 10112   ≤ cle 10113 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-pre-lttri 10048  ax-pre-lttrn 10049 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-po 5064  df-so 5065  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118 This theorem is referenced by:  maxlt  12062  iooin  12247  txmetcnp  22399  mbfmax  23461  dvlip2  23803  ply1divmo  23940
 Copyright terms: Public domain W3C validator