Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrmulc1cn Structured version   Visualization version   GIF version

Theorem xrmulc1cn 29758
 Description: The operation multiplying an extended real number by a nonnegative constant is continuous. (Contributed by Thierry Arnoux, 5-Jul-2017.)
Hypotheses
Ref Expression
xrmulc1cn.k 𝐽 = (ordTop‘ ≤ )
xrmulc1cn.f 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
xrmulc1cn.c (𝜑𝐶 ∈ ℝ+)
Assertion
Ref Expression
xrmulc1cn (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
Distinct variable groups:   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hint:   𝐽(𝑥)

Proof of Theorem xrmulc1cn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 letsr 17148 . . . 4 ≤ ∈ TosetRel
21a1i 11 . . 3 (𝜑 → ≤ ∈ TosetRel )
3 simpr 477 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
4 xrmulc1cn.c . . . . . . . . 9 (𝜑𝐶 ∈ ℝ+)
54adantr 481 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ+)
65rpxrd 11817 . . . . . . 7 ((𝜑𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
73, 6xmulcld 12075 . . . . . 6 ((𝜑𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) ∈ ℝ*)
87ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ*)
9 simpr 477 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
104adantr 481 . . . . . . . . 9 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
1110rpred 11816 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ)
1210rpne0d 11821 . . . . . . . 8 ((𝜑𝑦 ∈ ℝ*) → 𝐶 ≠ 0)
13 xreceu 29415 . . . . . . . 8 ((𝑦 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
149, 11, 12, 13syl3anc 1323 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦)
15 eqcom 2628 . . . . . . . . 9 (𝑦 = (𝑥 ·e 𝐶) ↔ (𝑥 ·e 𝐶) = 𝑦)
16 simpr 477 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝑥 ∈ ℝ*)
176adantlr 750 . . . . . . . . . . 11 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → 𝐶 ∈ ℝ*)
18 xmulcom 12039 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝐶 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
1916, 17, 18syl2anc 692 . . . . . . . . . 10 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑥 ·e 𝐶) = (𝐶 ·e 𝑥))
2019eqeq1d 2623 . . . . . . . . 9 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → ((𝑥 ·e 𝐶) = 𝑦 ↔ (𝐶 ·e 𝑥) = 𝑦))
2115, 20syl5bb 272 . . . . . . . 8 (((𝜑𝑦 ∈ ℝ*) ∧ 𝑥 ∈ ℝ*) → (𝑦 = (𝑥 ·e 𝐶) ↔ (𝐶 ·e 𝑥) = 𝑦))
2221reubidva 3114 . . . . . . 7 ((𝜑𝑦 ∈ ℝ*) → (∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶) ↔ ∃!𝑥 ∈ ℝ* (𝐶 ·e 𝑥) = 𝑦))
2314, 22mpbird 247 . . . . . 6 ((𝜑𝑦 ∈ ℝ*) → ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
2423ralrimiva 2960 . . . . 5 (𝜑 → ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶))
25 xrmulc1cn.f . . . . . 6 𝐹 = (𝑥 ∈ ℝ* ↦ (𝑥 ·e 𝐶))
2625f1ompt 6338 . . . . 5 (𝐹:ℝ*1-1-onto→ℝ* ↔ (∀𝑥 ∈ ℝ* (𝑥 ·e 𝐶) ∈ ℝ* ∧ ∀𝑦 ∈ ℝ* ∃!𝑥 ∈ ℝ* 𝑦 = (𝑥 ·e 𝐶)))
278, 24, 26sylanbrc 697 . . . 4 (𝜑𝐹:ℝ*1-1-onto→ℝ*)
28 simplr 791 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
29 simpr 477 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
304ad2antrr 761 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → 𝐶 ∈ ℝ+)
31 xlemul1 12063 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝐶 ∈ ℝ+) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
3228, 29, 30, 31syl3anc 1323 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
33 ovex 6632 . . . . . . . . 9 (𝑥 ·e 𝐶) ∈ V
3425fvmpt2 6248 . . . . . . . . 9 ((𝑥 ∈ ℝ* ∧ (𝑥 ·e 𝐶) ∈ V) → (𝐹𝑥) = (𝑥 ·e 𝐶))
3528, 33, 34sylancl 693 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑥) = (𝑥 ·e 𝐶))
36 oveq1 6611 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥 ·e 𝐶) = (𝑦 ·e 𝐶))
37 ovex 6632 . . . . . . . . . 10 (𝑦 ·e 𝐶) ∈ V
3836, 25, 37fvmpt 6239 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝐹𝑦) = (𝑦 ·e 𝐶))
3938adantl 482 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝐹𝑦) = (𝑦 ·e 𝐶))
4035, 39breq12d 4626 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → ((𝐹𝑥) ≤ (𝐹𝑦) ↔ (𝑥 ·e 𝐶) ≤ (𝑦 ·e 𝐶)))
4132, 40bitr4d 271 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4241ralrimiva 2960 . . . . 5 ((𝜑𝑥 ∈ ℝ*) → ∀𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
4342ralrimiva 2960 . . . 4 (𝜑 → ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦)))
44 df-isom 5856 . . . 4 (𝐹 Isom ≤ , ≤ (ℝ*, ℝ*) ↔ (𝐹:ℝ*1-1-onto→ℝ* ∧ ∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* (𝑥𝑦 ↔ (𝐹𝑥) ≤ (𝐹𝑦))))
4527, 43, 44sylanbrc 697 . . 3 (𝜑𝐹 Isom ≤ , ≤ (ℝ*, ℝ*))
46 ledm 17145 . . . 4 * = dom ≤
4746, 46ordthmeolem 21514 . . 3 (( ≤ ∈ TosetRel ∧ ≤ ∈ TosetRel ∧ 𝐹 Isom ≤ , ≤ (ℝ*, ℝ*)) → 𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
482, 2, 45, 47syl3anc 1323 . 2 (𝜑𝐹 ∈ ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ )))
49 xrmulc1cn.k . . 3 𝐽 = (ordTop‘ ≤ )
5049, 49oveq12i 6616 . 2 (𝐽 Cn 𝐽) = ((ordTop‘ ≤ ) Cn (ordTop‘ ≤ ))
5148, 50syl6eleqr 2709 1 (𝜑𝐹 ∈ (𝐽 Cn 𝐽))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  ∀wral 2907  ∃!wreu 2909  Vcvv 3186   class class class wbr 4613   ↦ cmpt 4673  –1-1-onto→wf1o 5846  ‘cfv 5847   Isom wiso 5848  (class class class)co 6604  ℝcr 9879  0cc0 9880  ℝ*cxr 10017   ≤ cle 10019  ℝ+crp 11776   ·e cxmu 11889  ordTopcordt 16080   TosetRel ctsr 17120   Cn ccn 20938 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-iin 4488  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-isom 5856  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-fi 8261  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-rp 11777  df-xneg 11890  df-xmul 11892  df-topgen 16025  df-ordt 16082  df-ps 17121  df-tsr 17122  df-top 20621  df-bases 20622  df-topon 20623  df-cn 20941 This theorem is referenced by:  xrge0mulc1cn  29769
 Copyright terms: Public domain W3C validator