Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrninxp Structured version   Visualization version   GIF version

Theorem xrninxp 35642
Description: Intersection of a range Cartesian product with a Cartesian product. (Contributed by Peter Mazsa, 7-Apr-2020.)
Assertion
Ref Expression
xrninxp ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Distinct variable groups:   𝑢,𝐴,𝑦,𝑧   𝑢,𝐵,𝑦,𝑧   𝑢,𝐶,𝑦,𝑧   𝑢,𝑅,𝑦,𝑧   𝑢,𝑆,𝑦,𝑧

Proof of Theorem xrninxp
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 inxp2 35621 . . 3 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)}
2 df-3an 1085 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥))
3 3anan12 1092 . . . . 5 ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
42, 3bitr3i 279 . . . 4 (((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥) ↔ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥)))
54opabbii 5135 . . 3 {⟨𝑢, 𝑥⟩ ∣ ((𝑢𝐴𝑥 ∈ (𝐵 × 𝐶)) ∧ 𝑢(𝑅𝑆)𝑥)} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
61, 5eqtri 2846 . 2 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
7 cnvopab 5999 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨𝑢, 𝑥⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))}
8 breq2 5072 . . . . 5 (𝑥 = ⟨𝑦, 𝑧⟩ → (𝑢(𝑅𝑆)𝑥𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))
98anbi2d 630 . . . 4 (𝑥 = ⟨𝑦, 𝑧⟩ → ((𝑢𝐴𝑢(𝑅𝑆)𝑥) ↔ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩)))
109dfoprab4 7755 . . 3 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
1110cnveqi 5747 . 2 {⟨𝑥, 𝑢⟩ ∣ (𝑥 ∈ (𝐵 × 𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)𝑥))} = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
126, 7, 113eqtr2i 2852 1 ((𝑅𝑆) ∩ (𝐴 × (𝐵 × 𝐶))) = {⟨⟨𝑦, 𝑧⟩, 𝑢⟩ ∣ ((𝑦𝐵𝑧𝐶) ∧ (𝑢𝐴𝑢(𝑅𝑆)⟨𝑦, 𝑧⟩))}
Colors of variables: wff setvar class
Syntax hints:  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3937  cop 4575   class class class wbr 5068  {copab 5130   × cxp 5555  ccnv 5556  {coprab 7159  cxrn 35454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-iota 6316  df-fun 6359  df-fv 6365  df-oprab 7162  df-1st 7691  df-2nd 7692
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator