Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrnltled Structured version   Visualization version   GIF version

Theorem xrnltled 10091
 Description: 'Not less than ' implies 'less than or equal to'. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
xrnltled.1 (𝜑𝐴 ∈ ℝ*)
xrnltled.2 (𝜑𝐵 ∈ ℝ*)
xrnltled.3 (𝜑 → ¬ 𝐵 < 𝐴)
Assertion
Ref Expression
xrnltled (𝜑𝐴𝐵)

Proof of Theorem xrnltled
StepHypRef Expression
1 xrnltled.3 . 2 (𝜑 → ¬ 𝐵 < 𝐴)
2 xrnltled.1 . . 3 (𝜑𝐴 ∈ ℝ*)
3 xrnltled.2 . . 3 (𝜑𝐵 ∈ ℝ*)
4 xrlenlt 10088 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
52, 3, 4syl2anc 692 . 2 (𝜑 → (𝐴𝐵 ↔ ¬ 𝐵 < 𝐴))
61, 5mpbird 247 1 (𝜑𝐴𝐵)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∈ wcel 1988   class class class wbr 4644  ℝ*cxr 10058   < clt 10059   ≤ cle 10060 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pr 4897 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-br 4645  df-opab 4704  df-xp 5110  df-cnv 5112  df-le 10065 This theorem is referenced by:  infxrlb  12149  ixxlb  12182  xrge0infssd  29500  infxrge0lb  29503  icccncfext  39863
 Copyright terms: Public domain W3C validator