MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrre Structured version   Visualization version   GIF version

Theorem xrre 12561
Description: A way of proving that an extended real is real. (Contributed by NM, 9-Mar-2006.)
Assertion
Ref Expression
xrre (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)

Proof of Theorem xrre
StepHypRef Expression
1 simprl 769 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → -∞ < 𝐴)
2 ltpnf 12514 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 < +∞)
32adantl 484 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → 𝐵 < +∞)
4 rexr 10686 . . . . . 6 (𝐵 ∈ ℝ → 𝐵 ∈ ℝ*)
5 pnfxr 10694 . . . . . . 7 +∞ ∈ ℝ*
6 xrlelttr 12548 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
75, 6mp3an3 1446 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
84, 7sylan2 594 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → ((𝐴𝐵𝐵 < +∞) → 𝐴 < +∞))
93, 8mpan2d 692 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ) → (𝐴𝐵𝐴 < +∞))
109imp 409 . . 3 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ 𝐴𝐵) → 𝐴 < +∞)
1110adantrl 714 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 < +∞)
12 xrrebnd 12560 . . 3 (𝐴 ∈ ℝ* → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
1312ad2antrr 724 . 2 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → (𝐴 ∈ ℝ ↔ (-∞ < 𝐴𝐴 < +∞)))
141, 11, 13mpbir2and 711 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ) ∧ (-∞ < 𝐴𝐴𝐵)) → 𝐴 ∈ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110   class class class wbr 5065  cr 10535  +∞cpnf 10671  -∞cmnf 10672  *cxr 10673   < clt 10674  cle 10675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-pre-lttri 10610  ax-pre-lttrn 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-mpt 5146  df-id 5459  df-po 5473  df-so 5474  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680
This theorem is referenced by:  xrrege0  12566  supxrre  12719  infxrre  12728  caucvgrlem  15028  pcgcd1  16212  tgioo  23403  ovolunlem1a  24096  ovoliunlem1  24102  ioombl1lem2  24159  itg2monolem2  24351  dvferm1lem  24580  radcnvle  25007  psercnlem1  25012  nmobndi  28551  ubthlem3  28648  nmophmi  29807  bdophsi  29872  bdopcoi  29874  orvclteel  31730  itg2addnclem  34942  itg2gt0cn  34946  areacirclem5  34985  eliocre  41783  fourierdlem87  42477  sge0ssre  42678
  Copyright terms: Public domain W3C validator