MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrs1mnd Structured version   Visualization version   GIF version

Theorem xrs1mnd 20511
Description: The extended real numbers, restricted to * ∖ {-∞}, form an additive monoid - in contrast to the full structure, see xrsmgmdifsgrp 20510. (Contributed by Mario Carneiro, 27-Nov-2014.)
Hypothesis
Ref Expression
xrs1mnd.1 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
Assertion
Ref Expression
xrs1mnd 𝑅 ∈ Mnd

Proof of Theorem xrs1mnd
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 difss 4105 . . . 4 (ℝ* ∖ {-∞}) ⊆ ℝ*
2 xrs1mnd.1 . . . . 5 𝑅 = (ℝ*𝑠s (ℝ* ∖ {-∞}))
3 xrsbas 20489 . . . . 5 * = (Base‘ℝ*𝑠)
42, 3ressbas2 16543 . . . 4 ((ℝ* ∖ {-∞}) ⊆ ℝ* → (ℝ* ∖ {-∞}) = (Base‘𝑅))
51, 4mp1i 13 . . 3 (⊤ → (ℝ* ∖ {-∞}) = (Base‘𝑅))
6 xrex 12374 . . . . 5 * ∈ V
76difexi 5223 . . . 4 (ℝ* ∖ {-∞}) ∈ V
8 xrsadd 20490 . . . . 5 +𝑒 = (+g‘ℝ*𝑠)
92, 8ressplusg 16600 . . . 4 ((ℝ* ∖ {-∞}) ∈ V → +𝑒 = (+g𝑅))
107, 9mp1i 13 . . 3 (⊤ → +𝑒 = (+g𝑅))
11 eldifsn 4711 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) ↔ (𝑥 ∈ ℝ*𝑥 ≠ -∞))
12 eldifsn 4711 . . . . 5 (𝑦 ∈ (ℝ* ∖ {-∞}) ↔ (𝑦 ∈ ℝ*𝑦 ≠ -∞))
13 xaddcl 12620 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
1413ad2ant2r 743 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ ℝ*)
15 xaddnemnf 12617 . . . . . 6 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ≠ -∞)
16 eldifsn 4711 . . . . . 6 ((𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}) ↔ ((𝑥 +𝑒 𝑦) ∈ ℝ* ∧ (𝑥 +𝑒 𝑦) ≠ -∞))
1714, 15, 16sylanbrc 583 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞)) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
1811, 12, 17syl2anb 597 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
19183adant1 1122 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 𝑦) ∈ (ℝ* ∖ {-∞}))
20 eldifsn 4711 . . . . 5 (𝑧 ∈ (ℝ* ∖ {-∞}) ↔ (𝑧 ∈ ℝ*𝑧 ≠ -∞))
21 xaddass 12630 . . . . 5 (((𝑥 ∈ ℝ*𝑥 ≠ -∞) ∧ (𝑦 ∈ ℝ*𝑦 ≠ -∞) ∧ (𝑧 ∈ ℝ*𝑧 ≠ -∞)) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2211, 12, 20, 21syl3anb 1153 . . . 4 ((𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞})) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
2322adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ (ℝ* ∖ {-∞}) ∧ 𝑦 ∈ (ℝ* ∖ {-∞}) ∧ 𝑧 ∈ (ℝ* ∖ {-∞}))) → ((𝑥 +𝑒 𝑦) +𝑒 𝑧) = (𝑥 +𝑒 (𝑦 +𝑒 𝑧)))
24 0re 10631 . . . 4 0 ∈ ℝ
25 rexr 10675 . . . . 5 (0 ∈ ℝ → 0 ∈ ℝ*)
26 renemnf 10678 . . . . 5 (0 ∈ ℝ → 0 ≠ -∞)
27 eldifsn 4711 . . . . 5 (0 ∈ (ℝ* ∖ {-∞}) ↔ (0 ∈ ℝ* ∧ 0 ≠ -∞))
2825, 26, 27sylanbrc 583 . . . 4 (0 ∈ ℝ → 0 ∈ (ℝ* ∖ {-∞}))
2924, 28mp1i 13 . . 3 (⊤ → 0 ∈ (ℝ* ∖ {-∞}))
30 eldifi 4100 . . . . 5 (𝑥 ∈ (ℝ* ∖ {-∞}) → 𝑥 ∈ ℝ*)
3130adantl 482 . . . 4 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → 𝑥 ∈ ℝ*)
32 xaddid2 12623 . . . 4 (𝑥 ∈ ℝ* → (0 +𝑒 𝑥) = 𝑥)
3331, 32syl 17 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (0 +𝑒 𝑥) = 𝑥)
3431xaddid1d 12624 . . 3 ((⊤ ∧ 𝑥 ∈ (ℝ* ∖ {-∞})) → (𝑥 +𝑒 0) = 𝑥)
355, 10, 19, 23, 29, 33, 34ismndd 17921 . 2 (⊤ → 𝑅 ∈ Mnd)
3635mptru 1535 1 𝑅 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1079   = wceq 1528  wtru 1529  wcel 2105  wne 3013  Vcvv 3492  cdif 3930  wss 3933  {csn 4557  cfv 6348  (class class class)co 7145  cr 10524  0cc0 10525  -∞cmnf 10661  *cxr 10662   +𝑒 cxad 12493  Basecbs 16471  s cress 16472  +gcplusg 16553  *𝑠cxrs 16761  Mndcmnd 17899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-xadd 12496  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-tset 16572  df-ple 16573  df-ds 16575  df-xrs 16763  df-mgm 17840  df-sgrp 17889  df-mnd 17900
This theorem is referenced by:  xrs1cmn  20513  xrge0subm  20514  xrge00  30600
  Copyright terms: Public domain W3C validator