MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsreclblem Structured version   Visualization version   GIF version

Theorem xrsdsreclblem 20593
Description: Lemma for xrsdsreclb 20594. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsreclblem (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))

Proof of Theorem xrsdsreclblem
StepHypRef Expression
1 necom 3071 . . . . 5 (𝐴𝐵𝐵𝐴)
2 xrleltne 12541 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵𝐵𝐴))
3 mnfxr 10700 . . . . . . . . . . . 12 -∞ ∈ ℝ*
43a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ∈ ℝ*)
5 simpl1 1187 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ*)
6 simpl2 1188 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ*)
7 pnfnre 10684 . . . . . . . . . . . . . 14 +∞ ∉ ℝ
87neli 3127 . . . . . . . . . . . . 13 ¬ +∞ ∈ ℝ
9 mnfle 12532 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ ℝ* → -∞ ≤ 𝐴)
105, 9syl 17 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ ≤ 𝐴)
11 simpl3 1189 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < 𝐵)
124, 5, 6, 10, 11xrlelttrd 12556 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐵)
13 xrltne 12559 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ*𝐵 ∈ ℝ* ∧ -∞ < 𝐵) → 𝐵 ≠ -∞)
144, 6, 12, 13syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≠ -∞)
15 xaddpnf1 12622 . . . . . . . . . . . . . . 15 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (𝐵 +𝑒 +∞) = +∞)
166, 14, 15syl2anc 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 +∞) = +∞)
1716eleq1d 2899 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((𝐵 +𝑒 +∞) ∈ ℝ ↔ +∞ ∈ ℝ))
188, 17mtbiri 329 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (𝐵 +𝑒 +∞) ∈ ℝ)
19 ngtmnft 12562 . . . . . . . . . . . . . 14 (𝐴 ∈ ℝ* → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
205, 19syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ ↔ ¬ -∞ < 𝐴))
21 simpr 487 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ)
22 xnegeq 12603 . . . . . . . . . . . . . . . . 17 (𝐴 = -∞ → -𝑒𝐴 = -𝑒-∞)
23 xnegmnf 12606 . . . . . . . . . . . . . . . . 17 -𝑒-∞ = +∞
2422, 23syl6eq 2874 . . . . . . . . . . . . . . . 16 (𝐴 = -∞ → -𝑒𝐴 = +∞)
2524oveq2d 7174 . . . . . . . . . . . . . . 15 (𝐴 = -∞ → (𝐵 +𝑒 -𝑒𝐴) = (𝐵 +𝑒 +∞))
2625eleq1d 2899 . . . . . . . . . . . . . 14 (𝐴 = -∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (𝐵 +𝑒 +∞) ∈ ℝ))
2721, 26syl5ibcom 247 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 = -∞ → (𝐵 +𝑒 +∞) ∈ ℝ))
2820, 27sylbird 262 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ -∞ < 𝐴 → (𝐵 +𝑒 +∞) ∈ ℝ))
2918, 28mt3d 150 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < 𝐴)
30 xrre2 12566 . . . . . . . . . . 11 (((-∞ ∈ ℝ*𝐴 ∈ ℝ*𝐵 ∈ ℝ*) ∧ (-∞ < 𝐴𝐴 < 𝐵)) → 𝐴 ∈ ℝ)
314, 5, 6, 29, 11, 30syl32anc 1374 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 ∈ ℝ)
32 pnfxr 10697 . . . . . . . . . . . 12 +∞ ∈ ℝ*
3332a1i 11 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → +∞ ∈ ℝ*)
345xnegcld 12696 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ∈ ℝ*)
35 xnegpnf 12605 . . . . . . . . . . . . . . . . 17 -𝑒+∞ = -∞
36 pnfge 12528 . . . . . . . . . . . . . . . . . . . 20 (𝐵 ∈ ℝ*𝐵 ≤ +∞)
376, 36syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ≤ +∞)
385, 6, 33, 11, 37xrltletrd 12557 . . . . . . . . . . . . . . . . . 18 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐴 < +∞)
39 xltnegi 12612 . . . . . . . . . . . . . . . . . 18 ((𝐴 ∈ ℝ* ∧ +∞ ∈ ℝ*𝐴 < +∞) → -𝑒+∞ < -𝑒𝐴)
405, 33, 38, 39syl3anc 1367 . . . . . . . . . . . . . . . . 17 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒+∞ < -𝑒𝐴)
4135, 40eqbrtrrid 5104 . . . . . . . . . . . . . . . 16 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -∞ < -𝑒𝐴)
42 xrltne 12559 . . . . . . . . . . . . . . . 16 ((-∞ ∈ ℝ* ∧ -𝑒𝐴 ∈ ℝ* ∧ -∞ < -𝑒𝐴) → -𝑒𝐴 ≠ -∞)
434, 34, 41, 42syl3anc 1367 . . . . . . . . . . . . . . 15 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → -𝑒𝐴 ≠ -∞)
44 xaddpnf2 12623 . . . . . . . . . . . . . . 15 ((-𝑒𝐴 ∈ ℝ* ∧ -𝑒𝐴 ≠ -∞) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4534, 43, 44syl2anc 586 . . . . . . . . . . . . . 14 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (+∞ +𝑒 -𝑒𝐴) = +∞)
4645eleq1d 2899 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ((+∞ +𝑒 -𝑒𝐴) ∈ ℝ ↔ +∞ ∈ ℝ))
478, 46mtbiri 329 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → ¬ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ)
48 nltpnft 12560 . . . . . . . . . . . . . 14 (𝐵 ∈ ℝ* → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
496, 48syl 17 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ ↔ ¬ 𝐵 < +∞))
50 oveq1 7165 . . . . . . . . . . . . . . 15 (𝐵 = +∞ → (𝐵 +𝑒 -𝑒𝐴) = (+∞ +𝑒 -𝑒𝐴))
5150eleq1d 2899 . . . . . . . . . . . . . 14 (𝐵 = +∞ → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ ↔ (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5221, 51syl5ibcom 247 . . . . . . . . . . . . 13 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐵 = +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5349, 52sylbird 262 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (¬ 𝐵 < +∞ → (+∞ +𝑒 -𝑒𝐴) ∈ ℝ))
5447, 53mt3d 150 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 < +∞)
55 xrre2 12566 . . . . . . . . . . 11 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (𝐴 < 𝐵𝐵 < +∞)) → 𝐵 ∈ ℝ)
565, 6, 33, 11, 54, 55syl32anc 1374 . . . . . . . . . 10 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → 𝐵 ∈ ℝ)
5731, 56jca 514 . . . . . . . . 9 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) ∧ (𝐵 +𝑒 -𝑒𝐴) ∈ ℝ) → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))
5857ex 415 . . . . . . . 8 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴 < 𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
59583expia 1117 . . . . . . 7 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
60593adant3 1128 . . . . . 6 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴 < 𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
612, 60sylbird 262 . . . . 5 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐵𝐴 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
621, 61syl5bi 244 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))
63623exp 1115 . . 3 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
6463com34 91 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ ℝ* → (𝐴𝐵 → (𝐴𝐵 → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ))))))
65643imp1 1343 1 (((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐴𝐵) ∧ 𝐴𝐵) → ((𝐵 +𝑒 -𝑒𝐴) ∈ ℝ → (𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018   class class class wbr 5068  cfv 6357  (class class class)co 7158  cr 10538  +∞cpnf 10674  -∞cmnf 10675  *cxr 10676   < clt 10677  cle 10678  -𝑒cxne 12507   +𝑒 cxad 12508  distcds 16576  *𝑠cxrs 16775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-po 5476  df-so 5477  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-xneg 12510  df-xadd 12511
This theorem is referenced by:  xrsdsreclb  20594
  Copyright terms: Public domain W3C validator