MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsdsval Structured version   Visualization version   GIF version

Theorem xrsdsval 19730
Description: The metric of the extended real number structure. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypothesis
Ref Expression
xrsds.d 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsdsval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))

Proof of Theorem xrsdsval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq12 4628 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦𝐴𝐵))
2 id 22 . . . 4 (𝑦 = 𝐵𝑦 = 𝐵)
3 xnegeq 11997 . . . 4 (𝑥 = 𝐴 → -𝑒𝑥 = -𝑒𝐴)
42, 3oveqan12rd 6635 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑦 +𝑒 -𝑒𝑥) = (𝐵 +𝑒 -𝑒𝐴))
5 id 22 . . . 4 (𝑥 = 𝐴𝑥 = 𝐴)
6 xnegeq 11997 . . . 4 (𝑦 = 𝐵 → -𝑒𝑦 = -𝑒𝐵)
75, 6oveqan12d 6634 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥 +𝑒 -𝑒𝑦) = (𝐴 +𝑒 -𝑒𝐵))
81, 4, 7ifbieq12d 4091 . 2 ((𝑥 = 𝐴𝑦 = 𝐵) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
9 xrsds.d . . 3 𝐷 = (dist‘ℝ*𝑠)
109xrsds 19729 . 2 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
11 ovex 6643 . . 3 (𝐵 +𝑒 -𝑒𝐴) ∈ V
12 ovex 6643 . . 3 (𝐴 +𝑒 -𝑒𝐵) ∈ V
1311, 12ifex 4134 . 2 if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)) ∈ V
148, 10, 13ovmpt2a 6756 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴𝐷𝐵) = if(𝐴𝐵, (𝐵 +𝑒 -𝑒𝐴), (𝐴 +𝑒 -𝑒𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  ifcif 4064   class class class wbr 4623  cfv 5857  (class class class)co 6615  *cxr 10033  cle 10035  -𝑒cxne 11903   +𝑒 cxad 11904  distcds 15890  *𝑠cxrs 16100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-xneg 11906  df-xadd 11907  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-plusg 15894  df-mulr 15895  df-tset 15900  df-ple 15901  df-ds 15904  df-xrs 16102
This theorem is referenced by:  xrsdsreval  19731  xrsdsreclb  19733  xmetrtri2  22101  xrsxmet  22552  metdscn  22599
  Copyright terms: Public domain W3C validator