MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsupexmnf Structured version   Visualization version   GIF version

Theorem xrsupexmnf 11869
Description: Adding minus infinity to a set does not affect the existence of its supremum. (Contributed by NM, 26-Oct-2005.)
Assertion
Ref Expression
xrsupexmnf (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
Distinct variable group:   𝑥,𝑦,𝑧,𝐴

Proof of Theorem xrsupexmnf
StepHypRef Expression
1 elun 3619 . . . . . 6 (𝑦 ∈ (𝐴 ∪ {-∞}) ↔ (𝑦𝐴𝑦 ∈ {-∞}))
2 simpr 475 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦𝐴 → ¬ 𝑥 < 𝑦))
3 velsn 4044 . . . . . . . . 9 (𝑦 ∈ {-∞} ↔ 𝑦 = -∞)
4 nltmnf 11706 . . . . . . . . . 10 (𝑥 ∈ ℝ* → ¬ 𝑥 < -∞)
5 breq2 4485 . . . . . . . . . . 11 (𝑦 = -∞ → (𝑥 < 𝑦𝑥 < -∞))
65notbid 306 . . . . . . . . . 10 (𝑦 = -∞ → (¬ 𝑥 < 𝑦 ↔ ¬ 𝑥 < -∞))
74, 6syl5ibrcom 235 . . . . . . . . 9 (𝑥 ∈ ℝ* → (𝑦 = -∞ → ¬ 𝑥 < 𝑦))
83, 7syl5bi 230 . . . . . . . 8 (𝑥 ∈ ℝ* → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦))
98adantr 479 . . . . . . 7 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ {-∞} → ¬ 𝑥 < 𝑦))
102, 9jaod 393 . . . . . 6 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → ((𝑦𝐴𝑦 ∈ {-∞}) → ¬ 𝑥 < 𝑦))
111, 10syl5bi 230 . . . . 5 ((𝑥 ∈ ℝ* ∧ (𝑦𝐴 → ¬ 𝑥 < 𝑦)) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦))
1211ex 448 . . . 4 (𝑥 ∈ ℝ* → ((𝑦𝐴 → ¬ 𝑥 < 𝑦) → (𝑦 ∈ (𝐴 ∪ {-∞}) → ¬ 𝑥 < 𝑦)))
1312ralimdv2 2848 . . 3 (𝑥 ∈ ℝ* → (∀𝑦𝐴 ¬ 𝑥 < 𝑦 → ∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦))
14 elun1 3646 . . . . . . . 8 (𝑧𝐴𝑧 ∈ (𝐴 ∪ {-∞}))
1514anim1i 589 . . . . . . 7 ((𝑧𝐴𝑦 < 𝑧) → (𝑧 ∈ (𝐴 ∪ {-∞}) ∧ 𝑦 < 𝑧))
1615reximi2 2897 . . . . . 6 (∃𝑧𝐴 𝑦 < 𝑧 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)
1716imim2i 16 . . . . 5 ((𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))
1817ralimi 2840 . . . 4 (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))
1918a1i 11 . . 3 (𝑥 ∈ ℝ* → (∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧) → ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
2013, 19anim12d 583 . 2 (𝑥 ∈ ℝ* → ((∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧))))
2120reximia 2896 1 (∃𝑥 ∈ ℝ* (∀𝑦𝐴 ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧𝐴 𝑦 < 𝑧)) → ∃𝑥 ∈ ℝ* (∀𝑦 ∈ (𝐴 ∪ {-∞}) ¬ 𝑥 < 𝑦 ∧ ∀𝑦 ∈ ℝ* (𝑦 < 𝑥 → ∃𝑧 ∈ (𝐴 ∪ {-∞})𝑦 < 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 381  wa 382   = wceq 1474  wcel 1938  wral 2800  wrex 2801  cun 3442  {csn 4028   class class class wbr 4481  -∞cmnf 9825  *cxr 9826   < clt 9827
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721  ax-cnex 9745  ax-resscn 9746
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-nel 2687  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-er 7503  df-en 7716  df-dom 7717  df-sdom 7718  df-pnf 9829  df-mnf 9830  df-xr 9831  df-ltxr 9832
This theorem is referenced by:  xrsupss  11873
  Copyright terms: Public domain W3C validator