MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsxmet Structured version   Visualization version   GIF version

Theorem xrsxmet 22520
Description: The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsxmet 𝐷 ∈ (∞Met‘ℝ*)

Proof of Theorem xrsxmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 11773 . . . 4 * ∈ V
21a1i 11 . . 3 (⊤ → ℝ* ∈ V)
3 id 22 . . . . . . . 8 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
4 xnegcl 11987 . . . . . . . 8 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
5 xaddcl 12013 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
63, 4, 5syl2anr 495 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
7 xnegcl 11987 . . . . . . . 8 (𝑦 ∈ ℝ* → -𝑒𝑦 ∈ ℝ*)
8 xaddcl 12013 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
97, 8sylan2 491 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
106, 9ifcld 4103 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*)
1110rgen2a 2971 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*
12 xrsxmet.1 . . . . . . 7 𝐷 = (dist‘ℝ*𝑠)
1312xrsds 19708 . . . . . 6 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
1413fmpt2 7182 . . . . 5 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*𝐷:(ℝ* × ℝ*)⟶ℝ*)
1511, 14mpbi 220 . . . 4 𝐷:(ℝ* × ℝ*)⟶ℝ*
1615a1i 11 . . 3 (⊤ → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
17 breq2 4617 . . . . . 6 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
18 breq2 4617 . . . . . 6 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
19 xsubge0 12034 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2019ancoms 469 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2120biimpar 502 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 0 ≤ (𝑦 +𝑒 -𝑒𝑥))
22 xrletri 11928 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
2322orcanai 951 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
24 xsubge0 12034 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 𝑦𝑥))
2524biimpar 502 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑦𝑥) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2623, 25syldan 487 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2717, 18, 21, 26ifbothda 4095 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2812xrsdsval 19709 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2927, 28breqtrrd 4641 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ (𝑥𝐷𝑦))
3029adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 0 ≤ (𝑥𝐷𝑦))
3129biantrud 528 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3228, 10eqeltrd 2698 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) ∈ ℝ*)
33 0xr 10030 . . . . . 6 0 ∈ ℝ*
34 xrletri3 11929 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3532, 33, 34sylancl 693 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
36 simpr 477 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
37 simplr 791 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = 0)
38 0re 9984 . . . . . . . . . . . . 13 0 ∈ ℝ
3937, 38syl6eqel 2706 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
4012xrsdsreclb 19712 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
41403expa 1262 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4241adantlr 750 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4339, 42mpbid 222 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
4443simpld 475 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℝ)
4544recnd 10012 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℂ)
4643simprd 479 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℝ)
4746recnd 10012 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℂ)
48 rexsub 12007 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4943, 48syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
5028eqeq1d 2623 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
5150biimpa 501 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
5251adantr 481 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
53 xneg11 11989 . . . . . . . . . . . . . . 15 (((𝑦 +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
546, 33, 53sylancl 693 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
55 simpr 477 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
564adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
57 xnegdi 12021 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
5855, 56, 57syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
59 xnegneg 11988 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
6059adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒-𝑒𝑥 = 𝑥)
6160oveq2d 6620 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥) = (-𝑒𝑦 +𝑒 𝑥))
627adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
63 simpl 473 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
64 xaddcom 12014 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6562, 63, 64syl2anc 692 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6658, 61, 653eqtrd 2659 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (𝑥 +𝑒 -𝑒𝑦))
67 xneg0 11986 . . . . . . . . . . . . . . . 16 -𝑒0 = 0
6867a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒0 = 0)
6966, 68eqeq12d 2636 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7054, 69bitr3d 270 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7170ad2antrr 761 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
72 biidd 252 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
73 eqeq1 2625 . . . . . . . . . . . . . 14 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7473bibi1d 333 . . . . . . . . . . . . 13 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
75 eqeq1 2625 . . . . . . . . . . . . . 14 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7675bibi1d 333 . . . . . . . . . . . . 13 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
7774, 76ifboth 4096 . . . . . . . . . . . 12 ((((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ∧ ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7871, 72, 77syl2anc 692 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7952, 78mpbid 222 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = 0)
8049, 79eqtr3d 2657 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝑦) = 0)
8145, 47, 80subeq0d 10344 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 = 𝑦)
8236, 81pm2.61dane 2877 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → 𝑥 = 𝑦)
8382ex 450 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 → 𝑥 = 𝑦))
8412xrsdsval 19709 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
8584anidms 676 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
86 xrleid 11927 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦𝑦)
8786iftrued 4066 . . . . . . . . 9 (𝑦 ∈ ℝ* → if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑦))
88 xnegid 12012 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦 +𝑒 -𝑒𝑦) = 0)
8985, 87, 883eqtrd 2659 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = 0)
9089adantl 482 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = 0)
91 oveq1 6611 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑦))
9291eqeq1d 2623 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑦) = 0))
9390, 92syl5ibrcom 237 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 → (𝑥𝐷𝑦) = 0))
9483, 93impbid 202 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
9531, 35, 943bitr2d 296 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
9695adantl 482 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
97 simplrr 800 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℝ)
9897leidd 10538 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ≤ (𝑧𝐷𝑦))
99 simpr 477 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
10099oveq1d 6619 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = (𝑥𝐷𝑦))
10199oveq1d 6619 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = (𝑥𝐷𝑥))
102 simpll1 1098 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑥 ∈ ℝ*)
103 oveq12 6613 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑦 = 𝑥) → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
104103anidms 676 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
105104eqeq1d 2623 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦𝐷𝑦) = 0 ↔ (𝑥𝐷𝑥) = 0))
106105, 89vtoclga 3258 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥𝐷𝑥) = 0)
107102, 106syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑥) = 0)
108101, 107eqtrd 2655 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = 0)
109108oveq1d 6619 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (0 + (𝑧𝐷𝑦)))
11097recnd 10012 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℂ)
111110addid2d 10181 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (0 + (𝑧𝐷𝑦)) = (𝑧𝐷𝑦))
112109, 111eqtr2d 2656 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
11398, 100, 1123brtr3d 4644 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
114 simpr 477 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
115114oveq1d 6619 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) = (𝑦𝐷𝑥))
116 simplrl 799 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) ∈ ℝ)
117115, 116eqeltrrd 2699 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
118117leidd 10538 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ≤ (𝑦𝐷𝑥))
119 simpll1 1098 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑥 ∈ ℝ*)
120 simpll2 1099 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑦 ∈ ℝ*)
121 oveq2 6612 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦𝐷𝑥) = (𝑦𝐷𝑦))
12291, 121eqtr4d 2658 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
123122adantl 482 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
124 eqeq2 2632 . . . . . . . . . 10 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
125 eqeq2 2632 . . . . . . . . . 10 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
126 xrleloe 11921 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
127126adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
128 simpr 477 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 𝑥𝑦)
129128neneqd 2795 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
130 biorf 420 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 = 𝑦𝑥 < 𝑦)))
131 orcom 402 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
132130, 131syl6bb 276 . . . . . . . . . . . . . . 15 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
133129, 132syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
134 xrltnle 10049 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
135134adantr 481 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
136127, 133, 1353bitr2d 296 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
137136con2bid 344 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
138137biimpa 501 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
139138iffalsed 4069 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦))
140136biimpar 502 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
141140iftrued 4066 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥))
142124, 125, 139, 141ifbothda 4095 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
14328adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
14412xrsdsval 19709 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
145144ancoms 469 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
146145adantr 481 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
147142, 143, 1463eqtr4d 2665 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
148123, 147pm2.61dane 2877 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
149119, 120, 148syl2anc 692 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
150114oveq1d 6619 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = (𝑦𝐷𝑦))
151120, 89syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑦) = 0)
152150, 151eqtrd 2655 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = 0)
153115, 152oveq12d 6622 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑦𝐷𝑥) + 0))
154117recnd 10012 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℂ)
155154addid1d 10180 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑦𝐷𝑥) + 0) = (𝑦𝐷𝑥))
156153, 155eqtrd 2655 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (𝑦𝐷𝑥))
157118, 149, 1563brtr4d 4645 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
158 simplrl 799 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) ∈ ℝ)
159 simpll3 1100 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ*)
160 simpll1 1098 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ*)
161 simprl 793 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑥)
16212xrsdsreclb 19712 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑥 ∈ ℝ*𝑧𝑥) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
163159, 160, 161, 162syl3anc 1323 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
164158, 163mpbid 222 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ))
165164simprd 479 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ)
166165recnd 10012 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℂ)
167 simplrr 800 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) ∈ ℝ)
168 simpll2 1099 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ*)
169 simprr 795 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑦)
17012xrsdsreclb 19712 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧𝑦) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
171159, 168, 169, 170syl3anc 1323 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
172167, 171mpbid 222 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ))
173172simprd 479 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ)
174173recnd 10012 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℂ)
175164simpld 475 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ)
176175recnd 10012 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℂ)
177166, 174, 176abs3difd 14133 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
17812xrsdsreval 19710 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
179165, 173, 178syl2anc 692 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
18012xrsdsreval 19710 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
181164, 180syl 17 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
182176, 166abssubd 14126 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑧𝑥)) = (abs‘(𝑥𝑧)))
183181, 182eqtrd 2655 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑥𝑧)))
18412xrsdsreval 19710 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
185172, 184syl 17 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
186183, 185oveq12d 6622 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
187177, 179, 1863brtr4d 4645 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
188113, 157, 187pm2.61da2ne 2878 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1891883adant1 1077 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1902, 16, 30, 96, 189isxmet2d 22042 . 2 (⊤ → 𝐷 ∈ (∞Met‘ℝ*))
191190trud 1490 1 𝐷 ∈ (∞Met‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wtru 1481  wcel 1987  wne 2790  wral 2907  Vcvv 3186  ifcif 4058   class class class wbr 4613   × cxp 5072  wf 5843  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880   + caddc 9883  *cxr 10017   < clt 10018  cle 10019  cmin 10210  -𝑒cxne 11887   +𝑒 cxad 11888  abscabs 13908  distcds 15871  *𝑠cxrs 16081  ∞Metcxmt 19650
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-int 4441  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-oadd 7509  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-4 11025  df-5 11026  df-6 11027  df-7 11028  df-8 11029  df-9 11030  df-n0 11237  df-z 11322  df-dec 11438  df-uz 11632  df-rp 11777  df-xneg 11890  df-xadd 11891  df-icc 12124  df-fz 12269  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910  df-struct 15783  df-ndx 15784  df-slot 15785  df-base 15786  df-plusg 15875  df-mulr 15876  df-tset 15881  df-ple 15882  df-ds 15885  df-xrs 16083  df-xmet 19658
This theorem is referenced by:  xrsdsre  22521  xrsblre  22522  xrsmopn  22523  metdcnlem  22547  xmetdcn2  22548  xmetdcn  22549  metdscn  22567  metdscn2  22568
  Copyright terms: Public domain W3C validator