MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xrsxmet Structured version   Visualization version   GIF version

Theorem xrsxmet 23416
Description: The metric on the extended reals is a proper extended metric. (Contributed by Mario Carneiro, 4-Sep-2015.)
Hypothesis
Ref Expression
xrsxmet.1 𝐷 = (dist‘ℝ*𝑠)
Assertion
Ref Expression
xrsxmet 𝐷 ∈ (∞Met‘ℝ*)

Proof of Theorem xrsxmet
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xrex 12385 . . . 4 * ∈ V
21a1i 11 . . 3 (⊤ → ℝ* ∈ V)
3 id 22 . . . . . . . 8 (𝑦 ∈ ℝ*𝑦 ∈ ℝ*)
4 xnegcl 12605 . . . . . . . 8 (𝑥 ∈ ℝ* → -𝑒𝑥 ∈ ℝ*)
5 xaddcl 12631 . . . . . . . 8 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
63, 4, 5syl2anr 598 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 +𝑒 -𝑒𝑥) ∈ ℝ*)
7 xnegcl 12605 . . . . . . . 8 (𝑦 ∈ ℝ* → -𝑒𝑦 ∈ ℝ*)
8 xaddcl 12631 . . . . . . . 8 ((𝑥 ∈ ℝ* ∧ -𝑒𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
97, 8sylan2 594 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 +𝑒 -𝑒𝑦) ∈ ℝ*)
106, 9ifcld 4511 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*)
1110rgen2 3203 . . . . 5 𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*
12 xrsxmet.1 . . . . . . 7 𝐷 = (dist‘ℝ*𝑠)
1312xrsds 20587 . . . . . 6 𝐷 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
1413fmpo 7765 . . . . 5 (∀𝑥 ∈ ℝ*𝑦 ∈ ℝ* if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) ∈ ℝ*𝐷:(ℝ* × ℝ*)⟶ℝ*)
1511, 14mpbi 232 . . . 4 𝐷:(ℝ* × ℝ*)⟶ℝ*
1615a1i 11 . . 3 (⊤ → 𝐷:(ℝ* × ℝ*)⟶ℝ*)
17 breq2 5069 . . . . . 6 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
18 breq2 5069 . . . . . 6 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦))))
19 xsubge0 12653 . . . . . . . 8 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2019ancoms 461 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑦 +𝑒 -𝑒𝑥) ↔ 𝑥𝑦))
2120biimpar 480 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 0 ≤ (𝑦 +𝑒 -𝑒𝑥))
22 xrletri 12545 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦𝑦𝑥))
2322orcanai 999 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 𝑦𝑥)
24 xsubge0 12653 . . . . . . . 8 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (0 ≤ (𝑥 +𝑒 -𝑒𝑦) ↔ 𝑦𝑥))
2524biimpar 480 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑦𝑥) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2623, 25syldan 593 . . . . . 6 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ ¬ 𝑥𝑦) → 0 ≤ (𝑥 +𝑒 -𝑒𝑦))
2717, 18, 21, 26ifbothda 4503 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2812xrsdsval 20588 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
2927, 28breqtrrd 5093 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 0 ≤ (𝑥𝐷𝑦))
3029adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → 0 ≤ (𝑥𝐷𝑦))
3129biantrud 534 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3228, 10eqeltrd 2913 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) ∈ ℝ*)
33 0xr 10687 . . . . . 6 0 ∈ ℝ*
34 xrletri3 12546 . . . . . 6 (((𝑥𝐷𝑦) ∈ ℝ* ∧ 0 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
3532, 33, 34sylancl 588 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ ((𝑥𝐷𝑦) ≤ 0 ∧ 0 ≤ (𝑥𝐷𝑦))))
36 simpr 487 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥 = 𝑦) → 𝑥 = 𝑦)
37 simplr 767 . . . . . . . . . . . . 13 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = 0)
38 0re 10642 . . . . . . . . . . . . 13 0 ∈ ℝ
3937, 38eqeltrdi 2921 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) ∈ ℝ)
4012xrsdsreclb 20591 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4140ad4ant124 1169 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥𝐷𝑦) ∈ ℝ ↔ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
4239, 41mpbid 234 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ))
4342simpld 497 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℝ)
4443recnd 10668 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 ∈ ℂ)
4542simprd 498 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℝ)
4645recnd 10668 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑦 ∈ ℂ)
47 rexsub 12625 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4842, 47syl 17 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = (𝑥𝑦))
4928eqeq1d 2823 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
5049biimpa 479 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
5150adantr 483 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0)
52 xneg11 12607 . . . . . . . . . . . . . . 15 (((𝑦 +𝑒 -𝑒𝑥) ∈ ℝ* ∧ 0 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
536, 33, 52sylancl 588 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑦 +𝑒 -𝑒𝑥) = 0))
54 simpr 487 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑦 ∈ ℝ*)
554adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑥 ∈ ℝ*)
56 xnegdi 12640 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℝ* ∧ -𝑒𝑥 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
5754, 55, 56syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥))
58 xnegneg 12606 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℝ* → -𝑒-𝑒𝑥 = 𝑥)
5958adantr 483 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒-𝑒𝑥 = 𝑥)
6059oveq2d 7171 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 -𝑒-𝑒𝑥) = (-𝑒𝑦 +𝑒 𝑥))
617adantl 484 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒𝑦 ∈ ℝ*)
62 simpl 485 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → 𝑥 ∈ ℝ*)
63 xaddcom 12632 . . . . . . . . . . . . . . . . 17 ((-𝑒𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6461, 62, 63syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒𝑦 +𝑒 𝑥) = (𝑥 +𝑒 -𝑒𝑦))
6557, 60, 643eqtrd 2860 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒(𝑦 +𝑒 -𝑒𝑥) = (𝑥 +𝑒 -𝑒𝑦))
66 xneg0 12604 . . . . . . . . . . . . . . . 16 -𝑒0 = 0
6766a1i 11 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → -𝑒0 = 0)
6865, 67eqeq12d 2837 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (-𝑒(𝑦 +𝑒 -𝑒𝑥) = -𝑒0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
6953, 68bitr3d 283 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7069ad2antrr 724 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
71 biidd 264 . . . . . . . . . . . 12 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
72 eqeq1 2825 . . . . . . . . . . . . . 14 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7372bibi1d 346 . . . . . . . . . . . . 13 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
74 eqeq1 2825 . . . . . . . . . . . . . 14 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0))
7574bibi1d 346 . . . . . . . . . . . . 13 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) → (((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ↔ (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)))
7673, 75ifboth 4504 . . . . . . . . . . . 12 ((((𝑦 +𝑒 -𝑒𝑥) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0) ∧ ((𝑥 +𝑒 -𝑒𝑦) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7770, 71, 76syl2anc 586 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = 0 ↔ (𝑥 +𝑒 -𝑒𝑦) = 0))
7851, 77mpbid 234 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥 +𝑒 -𝑒𝑦) = 0)
7948, 78eqtr3d 2858 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → (𝑥𝑦) = 0)
8044, 46, 79subeq0d 11004 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) ∧ 𝑥𝑦) → 𝑥 = 𝑦)
8136, 80pm2.61dane 3104 . . . . . . 7 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ (𝑥𝐷𝑦) = 0) → 𝑥 = 𝑦)
8281ex 415 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 → 𝑥 = 𝑦))
8312xrsdsval 20588 . . . . . . . . . 10 ((𝑦 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
8483anidms 569 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)))
85 xrleid 12543 . . . . . . . . . 10 (𝑦 ∈ ℝ*𝑦𝑦)
8685iftrued 4474 . . . . . . . . 9 (𝑦 ∈ ℝ* → if(𝑦𝑦, (𝑦 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑦))
87 xnegid 12630 . . . . . . . . 9 (𝑦 ∈ ℝ* → (𝑦 +𝑒 -𝑒𝑦) = 0)
8884, 86, 873eqtrd 2860 . . . . . . . 8 (𝑦 ∈ ℝ* → (𝑦𝐷𝑦) = 0)
8988adantl 484 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑦) = 0)
90 oveq1 7162 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑦))
9190eqeq1d 2823 . . . . . . 7 (𝑥 = 𝑦 → ((𝑥𝐷𝑦) = 0 ↔ (𝑦𝐷𝑦) = 0))
9289, 91syl5ibrcom 249 . . . . . 6 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 = 𝑦 → (𝑥𝐷𝑦) = 0))
9382, 92impbid 214 . . . . 5 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) = 0 ↔ 𝑥 = 𝑦))
9431, 35, 933bitr2d 309 . . . 4 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
9594adantl 484 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*)) → ((𝑥𝐷𝑦) ≤ 0 ↔ 𝑥 = 𝑦))
96 simplrr 776 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℝ)
9796leidd 11205 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ≤ (𝑧𝐷𝑦))
98 simpr 487 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑧 = 𝑥)
9998oveq1d 7170 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = (𝑥𝐷𝑦))
10098oveq1d 7170 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = (𝑥𝐷𝑥))
101 simpll1 1208 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → 𝑥 ∈ ℝ*)
102 oveq12 7164 . . . . . . . . . . . . 13 ((𝑦 = 𝑥𝑦 = 𝑥) → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
103102anidms 569 . . . . . . . . . . . 12 (𝑦 = 𝑥 → (𝑦𝐷𝑦) = (𝑥𝐷𝑥))
104103eqeq1d 2823 . . . . . . . . . . 11 (𝑦 = 𝑥 → ((𝑦𝐷𝑦) = 0 ↔ (𝑥𝐷𝑥) = 0))
105104, 88vtoclga 3573 . . . . . . . . . 10 (𝑥 ∈ ℝ* → (𝑥𝐷𝑥) = 0)
106101, 105syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑥) = 0)
107100, 106eqtrd 2856 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑥) = 0)
108107oveq1d 7170 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (0 + (𝑧𝐷𝑦)))
10996recnd 10668 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) ∈ ℂ)
110109addid2d 10840 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (0 + (𝑧𝐷𝑦)) = (𝑧𝐷𝑦))
111108, 110eqtr2d 2857 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑧𝐷𝑦) = ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
11297, 99, 1113brtr3d 5096 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑥) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
113 simpr 487 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑧 = 𝑦)
114113oveq1d 7170 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) = (𝑦𝐷𝑥))
115 simplrl 775 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑥) ∈ ℝ)
116114, 115eqeltrrd 2914 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℝ)
117116leidd 11205 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ≤ (𝑦𝐷𝑥))
118 simpll1 1208 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑥 ∈ ℝ*)
119 simpll2 1209 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → 𝑦 ∈ ℝ*)
120 oveq2 7163 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑦𝐷𝑥) = (𝑦𝐷𝑦))
12190, 120eqtr4d 2859 . . . . . . . . 9 (𝑥 = 𝑦 → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
122121adantl 484 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
123 eqeq2 2833 . . . . . . . . . 10 ((𝑥 +𝑒 -𝑒𝑦) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
124 eqeq2 2833 . . . . . . . . . 10 ((𝑦 +𝑒 -𝑒𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)) → (if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥) ↔ if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥))))
125 xrleloe 12536 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
126125adantr 483 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
127 simpr 487 . . . . . . . . . . . . . . . 16 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → 𝑥𝑦)
128127neneqd 3021 . . . . . . . . . . . . . . 15 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → ¬ 𝑥 = 𝑦)
129 biorf 933 . . . . . . . . . . . . . . . 16 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 = 𝑦𝑥 < 𝑦)))
130 orcom 866 . . . . . . . . . . . . . . . 16 ((𝑥 = 𝑦𝑥 < 𝑦) ↔ (𝑥 < 𝑦𝑥 = 𝑦))
131129, 130syl6bb 289 . . . . . . . . . . . . . . 15 𝑥 = 𝑦 → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
132128, 131syl 17 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ (𝑥 < 𝑦𝑥 = 𝑦)))
133 xrltnle 10707 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
134133adantr 483 . . . . . . . . . . . . . 14 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥 < 𝑦 ↔ ¬ 𝑦𝑥))
135126, 132, 1343bitr2d 309 . . . . . . . . . . . . 13 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝑦 ↔ ¬ 𝑦𝑥))
136135con2bid 357 . . . . . . . . . . . 12 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝑥 ↔ ¬ 𝑥𝑦))
137136biimpa 479 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → ¬ 𝑥𝑦)
138137iffalsed 4477 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑥 +𝑒 -𝑒𝑦))
139135biimpar 480 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → 𝑥𝑦)
140139iftrued 4474 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) ∧ ¬ 𝑦𝑥) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = (𝑦 +𝑒 -𝑒𝑥))
141123, 124, 138, 140ifbothda 4503 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
14228adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = if(𝑥𝑦, (𝑦 +𝑒 -𝑒𝑥), (𝑥 +𝑒 -𝑒𝑦)))
14312xrsdsval 20588 . . . . . . . . . . 11 ((𝑦 ∈ ℝ*𝑥 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
144143ancoms 461 . . . . . . . . . 10 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
145144adantr 483 . . . . . . . . 9 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑦𝐷𝑥) = if(𝑦𝑥, (𝑥 +𝑒 -𝑒𝑦), (𝑦 +𝑒 -𝑒𝑥)))
146141, 142, 1453eqtr4d 2866 . . . . . . . 8 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) ∧ 𝑥𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
147122, 146pm2.61dane 3104 . . . . . . 7 ((𝑥 ∈ ℝ*𝑦 ∈ ℝ*) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
148118, 119, 147syl2anc 586 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) = (𝑦𝐷𝑥))
149113oveq1d 7170 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = (𝑦𝐷𝑦))
150119, 88syl 17 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑦) = 0)
151149, 150eqtrd 2856 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑧𝐷𝑦) = 0)
152114, 151oveq12d 7173 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((𝑦𝐷𝑥) + 0))
153116recnd 10668 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑦𝐷𝑥) ∈ ℂ)
154153addid1d 10839 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑦𝐷𝑥) + 0) = (𝑦𝐷𝑥))
155152, 154eqtrd 2856 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = (𝑦𝐷𝑥))
156117, 148, 1553brtr4d 5097 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ 𝑧 = 𝑦) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
157 simplrl 775 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) ∈ ℝ)
158 simpll3 1210 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ*)
159 simpll1 1208 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ*)
160 simprl 769 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑥)
16112xrsdsreclb 20591 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑥 ∈ ℝ*𝑧𝑥) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
162158, 159, 160, 161syl3anc 1367 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ)))
163157, 162mpbid 234 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ))
164163simprd 498 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℝ)
165164recnd 10668 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑥 ∈ ℂ)
166 simplrr 776 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) ∈ ℝ)
167 simpll2 1209 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ*)
168 simprr 771 . . . . . . . . . . 11 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧𝑦)
16912xrsdsreclb 20591 . . . . . . . . . . 11 ((𝑧 ∈ ℝ*𝑦 ∈ ℝ*𝑧𝑦) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
170158, 167, 168, 169syl3anc 1367 . . . . . . . . . 10 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑦) ∈ ℝ ↔ (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ)))
171166, 170mpbid 234 . . . . . . . . 9 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ))
172171simprd 498 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℝ)
173172recnd 10668 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑦 ∈ ℂ)
174163simpld 497 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℝ)
175174recnd 10668 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → 𝑧 ∈ ℂ)
176165, 173, 175abs3difd 14819 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑥𝑦)) ≤ ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
17712xrsdsreval 20589 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
178164, 172, 177syl2anc 586 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) = (abs‘(𝑥𝑦)))
17912xrsdsreval 20589 . . . . . . . . 9 ((𝑧 ∈ ℝ ∧ 𝑥 ∈ ℝ) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
180163, 179syl 17 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑧𝑥)))
181175, 165abssubd 14812 . . . . . . . 8 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (abs‘(𝑧𝑥)) = (abs‘(𝑥𝑧)))
182180, 181eqtrd 2856 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑥) = (abs‘(𝑥𝑧)))
18312xrsdsreval 20589 . . . . . . . 8 ((𝑧 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
184171, 183syl 17 . . . . . . 7 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑧𝐷𝑦) = (abs‘(𝑧𝑦)))
185182, 184oveq12d 7173 . . . . . 6 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)) = ((abs‘(𝑥𝑧)) + (abs‘(𝑧𝑦))))
186176, 178, 1853brtr4d 5097 . . . . 5 ((((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) ∧ (𝑧𝑥𝑧𝑦)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
187112, 156, 186pm2.61da2ne 3105 . . . 4 (((𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1881873adant1 1126 . . 3 ((⊤ ∧ (𝑥 ∈ ℝ*𝑦 ∈ ℝ*𝑧 ∈ ℝ*) ∧ ((𝑧𝐷𝑥) ∈ ℝ ∧ (𝑧𝐷𝑦) ∈ ℝ)) → (𝑥𝐷𝑦) ≤ ((𝑧𝐷𝑥) + (𝑧𝐷𝑦)))
1892, 16, 30, 95, 188isxmet2d 22936 . 2 (⊤ → 𝐷 ∈ (∞Met‘ℝ*))
190189mptru 1540 1 𝐷 ∈ (∞Met‘ℝ*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wtru 1534  wcel 2110  wne 3016  wral 3138  Vcvv 3494  ifcif 4466   class class class wbr 5065   × cxp 5552  wf 6350  cfv 6354  (class class class)co 7155  cr 10535  0cc0 10536   + caddc 10539  *cxr 10673   < clt 10674  cle 10675  cmin 10869  -𝑒cxne 12503   +𝑒 cxad 12504  abscabs 14592  distcds 16573  *𝑠cxrs 16772  ∞Metcxmet 20529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-int 4876  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-1o 8101  df-oadd 8105  df-er 8288  df-map 8407  df-en 8509  df-dom 8510  df-sdom 8511  df-fin 8512  df-sup 8905  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-4 11701  df-5 11702  df-6 11703  df-7 11704  df-8 11705  df-9 11706  df-n0 11897  df-z 11981  df-dec 12098  df-uz 12243  df-rp 12389  df-xneg 12506  df-xadd 12507  df-icc 12744  df-fz 12892  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-struct 16484  df-ndx 16485  df-slot 16486  df-base 16488  df-plusg 16577  df-mulr 16578  df-tset 16583  df-ple 16584  df-ds 16586  df-xrs 16774  df-xmet 20537
This theorem is referenced by:  xrsdsre  23417  xrsblre  23418  xrsmopn  23419  metdcnlem  23443  xmetdcn2  23444  xmetdcn  23445  metdscn  23463  metdscn2  23464
  Copyright terms: Public domain W3C validator