MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedainv Structured version   Visualization version   GIF version

Theorem yonedainv 17525
Description: The Yoneda Lemma with explicit inverse. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yoneda.m 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
yonedainv.i 𝐼 = (Inv‘𝑅)
yonedainv.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
Assertion
Ref Expression
yonedainv (𝜑𝑀(𝑍𝐼𝐸)𝑁)
Distinct variable groups:   𝑓,𝑎,𝑔,𝑥,𝑦, 1   𝑢,𝑎,𝑔,𝑦,𝐶,𝑓,𝑥   𝐸,𝑎,𝑓,𝑔,𝑢,𝑦   𝐵,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑁,𝑎   𝑂,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑆,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑔,𝑀,𝑢,𝑦   𝑄,𝑎,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑌,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦   𝑍,𝑎,𝑓,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔,𝑎)   𝑇(𝑥,𝑎)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝐼(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑀(𝑥,𝑓,𝑎)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔,𝑎)

Proof of Theorem yonedainv
Dummy variables 𝑏 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.r . . 3 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
2 eqid 2821 . . . 4 (𝑄 ×c 𝑂) = (𝑄 ×c 𝑂)
3 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
43fucbas 17224 . . . 4 (𝑂 Func 𝑆) = (Base‘𝑄)
5 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
6 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
75, 6oppcbas 16982 . . . 4 𝐵 = (Base‘𝑂)
82, 4, 7xpcbas 17422 . . 3 ((𝑂 Func 𝑆) × 𝐵) = (Base‘(𝑄 ×c 𝑂))
9 eqid 2821 . . 3 ((𝑄 ×c 𝑂) Nat 𝑇) = ((𝑄 ×c 𝑂) Nat 𝑇)
10 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
11 yoneda.1 . . . . 5 1 = (Id‘𝐶)
12 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
13 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
14 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
15 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
16 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
17 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
18 yoneda.w . . . . 5 (𝜑𝑉𝑊)
19 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
20 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
2110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20yonedalem1 17516 . . . 4 (𝜑 → (𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)))
2221simpld 497 . . 3 (𝜑𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
2321simprd 498 . . 3 (𝜑𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇))
24 yonedainv.i . . 3 𝐼 = (Inv‘𝑅)
25 eqid 2821 . . 3 (Inv‘𝑇) = (Inv‘𝑇)
26 yoneda.m . . . 4 𝑀 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑎 ∈ (((1st𝑌)‘𝑥)(𝑂 Nat 𝑆)𝑓) ↦ ((𝑎𝑥)‘( 1𝑥))))
2710, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 17, 18, 19, 20, 26yonedalem3 17524 . . 3 (𝜑𝑀 ∈ (𝑍((𝑄 ×c 𝑂) Nat 𝑇)𝐸))
2817adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝐶 ∈ Cat)
2918adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑉𝑊)
3019adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ran (Homf𝐶) ⊆ 𝑈)
3120adantr 483 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
32 simprl 769 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ∈ (𝑂 Func 𝑆))
33 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑤𝐵)
3410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33, 26yonedalem3a 17518 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
3534simprd 498 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤))
3628adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝐶 ∈ Cat)
3729adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑉𝑊)
3830adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
3931adantr 483 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
40 simplrl 775 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ∈ (𝑂 Func 𝑆))
41 simplrr 776 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑤𝐵)
42 yonedainv.n . . . . . . . . . . . 12 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
43 simpr 487 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → 𝑏 ∈ ((1st)‘𝑤))
4410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 36, 37, 38, 39, 40, 41, 42, 43yonedalem4c 17521 . . . . . . . . . . 11 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑏) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
4544fmpttd 6874 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
466fvexi 6679 . . . . . . . . . . . . . . 15 𝐵 ∈ V
4746mptex 6980 . . . . . . . . . . . . . 14 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))) ∈ V
48 eqid 2821 . . . . . . . . . . . . . 14 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))))
4947, 48fnmpti 6486 . . . . . . . . . . . . 13 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) Fn ((1st)‘𝑤)
50 simpl 485 . . . . . . . . . . . . . . . . . . 19 ((𝑓 = 𝑥 = 𝑤) → 𝑓 = )
5150fveq2d 6669 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 𝑥 = 𝑤) → (1st𝑓) = (1st))
52 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝑓 = 𝑥 = 𝑤) → 𝑥 = 𝑤)
5351, 52fveq12d 6672 . . . . . . . . . . . . . . . . 17 ((𝑓 = 𝑥 = 𝑤) → ((1st𝑓)‘𝑥) = ((1st)‘𝑤))
54 simplr 767 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑥 = 𝑤)
5554oveq2d 7166 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑦(Hom ‘𝐶)𝑥) = (𝑦(Hom ‘𝐶)𝑤))
56 simpll 765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑓 = )
5756fveq2d 6669 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (2nd𝑓) = (2nd))
58 eqidd 2822 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → 𝑦 = 𝑦)
5957, 54, 58oveq123d 7171 . . . . . . . . . . . . . . . . . . . . 21 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑥(2nd𝑓)𝑦) = (𝑤(2nd)𝑦))
6059fveq1d 6667 . . . . . . . . . . . . . . . . . . . 20 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → ((𝑥(2nd𝑓)𝑦)‘𝑔) = ((𝑤(2nd)𝑦)‘𝑔))
6160fveq1d 6667 . . . . . . . . . . . . . . . . . . 19 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢) = (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))
6255, 61mpteq12dv 5144 . . . . . . . . . . . . . . . . . 18 (((𝑓 = 𝑥 = 𝑤) ∧ 𝑦𝐵) → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)) = (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))
6362mpteq2dva 5154 . . . . . . . . . . . . . . . . 17 ((𝑓 = 𝑥 = 𝑤) → (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢))) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢))))
6453, 63mpteq12dv 5144 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝑥 = 𝑤) → (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
65 fvex 6678 . . . . . . . . . . . . . . . . 17 ((1st)‘𝑤) ∈ V
6665mptex 6980 . . . . . . . . . . . . . . . 16 (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) ∈ V
6764, 42, 66ovmpoa 7299 . . . . . . . . . . . . . . 15 (( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵) → (𝑁𝑤) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
6867adantl 484 . . . . . . . . . . . . . 14 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) = (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))))
6968fneq1d 6441 . . . . . . . . . . . . 13 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) Fn ((1st)‘𝑤) ↔ (𝑢 ∈ ((1st)‘𝑤) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑤) ↦ (((𝑤(2nd)𝑦)‘𝑔)‘𝑢)))) Fn ((1st)‘𝑤)))
7049, 69mpbiri 260 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) Fn ((1st)‘𝑤))
71 dffn5 6719 . . . . . . . . . . . 12 ((𝑁𝑤) Fn ((1st)‘𝑤) ↔ (𝑁𝑤) = (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)))
7270, 71sylib 220 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤) = (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)))
735oppccat 16986 . . . . . . . . . . . . . 14 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
7417, 73syl 17 . . . . . . . . . . . . 13 (𝜑𝑂 ∈ Cat)
7574adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑂 ∈ Cat)
7620unssbd 4164 . . . . . . . . . . . . . . 15 (𝜑𝑈𝑉)
7718, 76ssexd 5221 . . . . . . . . . . . . . 14 (𝜑𝑈 ∈ V)
7812setccat 17339 . . . . . . . . . . . . . 14 (𝑈 ∈ V → 𝑆 ∈ Cat)
7977, 78syl 17 . . . . . . . . . . . . 13 (𝜑𝑆 ∈ Cat)
8079adantr 483 . . . . . . . . . . . 12 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → 𝑆 ∈ Cat)
8115, 75, 80, 7, 32, 33evlf1 17464 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝐸)𝑤) = ((1st)‘𝑤))
8210, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 28, 29, 30, 31, 32, 33yonedalem21 17517 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝑍)𝑤) = (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
8372, 81, 82feq123d 6498 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤) ↔ (𝑏 ∈ ((1st)‘𝑤) ↦ ((𝑁𝑤)‘𝑏)):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆))))
8445, 83mpbird 259 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤))
85 fcompt 6890 . . . . . . . . . . 11 (((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ∧ (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))))
8635, 84, 85syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))))
8781eleq2d 2898 . . . . . . . . . . . . . 14 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↔ 𝑘 ∈ ((1st)‘𝑤)))
8887biimpa 479 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st𝐸)𝑤)) → 𝑘 ∈ ((1st)‘𝑤))
8928adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝐶 ∈ Cat)
9029adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑉𝑊)
9130adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
9231adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
93 simplrl 775 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ∈ (𝑂 Func 𝑆))
94 simplrr 776 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑤𝐵)
9510, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 26yonedalem3a 17518 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
9695simpld 497 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))))
9796fveq1d 6667 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)))
9872, 44fmpt3d 6875 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑁𝑤):((1st)‘𝑤)⟶(((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
9998ffvelrnda 6846 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑁𝑤)‘𝑘) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
100 fveq1 6664 . . . . . . . . . . . . . . . . 17 (𝑎 = ((𝑁𝑤)‘𝑘) → (𝑎𝑤) = (((𝑁𝑤)‘𝑘)‘𝑤))
101100fveq1d 6667 . . . . . . . . . . . . . . . 16 (𝑎 = ((𝑁𝑤)‘𝑘) → ((𝑎𝑤)‘( 1𝑤)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
102 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))
103 fvex 6678 . . . . . . . . . . . . . . . 16 ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) ∈ V
104101, 102, 103fvmpt 6763 . . . . . . . . . . . . . . 15 (((𝑁𝑤)‘𝑘) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
10599, 104syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘((𝑁𝑤)‘𝑘)) = ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)))
106 simpr 487 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑘 ∈ ((1st)‘𝑤))
107 eqid 2821 . . . . . . . . . . . . . . . . 17 (Hom ‘𝐶) = (Hom ‘𝐶)
1086, 107, 11, 89, 94catidcl 16947 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
10910, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 89, 90, 91, 92, 93, 94, 42, 106, 94, 108yonedalem4b 17520 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) = (((𝑤(2nd)𝑤)‘( 1𝑤))‘𝑘))
110 eqid 2821 . . . . . . . . . . . . . . . . . 18 (Id‘𝑂) = (Id‘𝑂)
111 eqid 2821 . . . . . . . . . . . . . . . . . 18 (Id‘𝑆) = (Id‘𝑆)
112 relfunc 17126 . . . . . . . . . . . . . . . . . . 19 Rel (𝑂 Func 𝑆)
113 1st2ndbr 7735 . . . . . . . . . . . . . . . . . . 19 ((Rel (𝑂 Func 𝑆) ∧ ∈ (𝑂 Func 𝑆)) → (1st)(𝑂 Func 𝑆)(2nd))
114112, 93, 113sylancr 589 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
1157, 110, 111, 114, 94funcid 17134 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘((Id‘𝑂)‘𝑤)) = ((Id‘𝑆)‘((1st)‘𝑤)))
1165, 11oppcid 16985 . . . . . . . . . . . . . . . . . . . 20 (𝐶 ∈ Cat → (Id‘𝑂) = 1 )
11789, 116syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (Id‘𝑂) = 1 )
118117fveq1d 6667 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((Id‘𝑂)‘𝑤) = ( 1𝑤))
119118fveq2d 6669 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘((Id‘𝑂)‘𝑤)) = ((𝑤(2nd)𝑤)‘( 1𝑤)))
12077ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑈 ∈ V)
121 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (Base‘𝑆) = (Base‘𝑆)
1227, 121, 114funcf1 17130 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st):𝐵⟶(Base‘𝑆))
12312, 120setcbas 17332 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → 𝑈 = (Base‘𝑆))
124123feq3d 6496 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((1st):𝐵𝑈 ↔ (1st):𝐵⟶(Base‘𝑆)))
125122, 124mpbird 259 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (1st):𝐵𝑈)
126125, 94ffvelrnd 6847 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
12712, 111, 120, 126setcid 17340 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((Id‘𝑆)‘((1st)‘𝑤)) = ( I ↾ ((1st)‘𝑤)))
128115, 119, 1273eqtr3d 2864 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑤(2nd)𝑤)‘( 1𝑤)) = ( I ↾ ((1st)‘𝑤)))
129128fveq1d 6667 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (((𝑤(2nd)𝑤)‘( 1𝑤))‘𝑘) = (( I ↾ ((1st)‘𝑤))‘𝑘))
130 fvresi 6930 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ((1st)‘𝑤) → (( I ↾ ((1st)‘𝑤))‘𝑘) = 𝑘)
131130adantl 484 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → (( I ↾ ((1st)‘𝑤))‘𝑘) = 𝑘)
132109, 129, 1313eqtrd 2860 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((((𝑁𝑤)‘𝑘)‘𝑤)‘( 1𝑤)) = 𝑘)
13397, 105, 1323eqtrd 2860 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st)‘𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = 𝑘)
13488, 133syldan 593 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑘 ∈ ((1st𝐸)𝑤)) → ((𝑀𝑤)‘((𝑁𝑤)‘𝑘)) = 𝑘)
135134mpteq2dva 5154 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ 𝑘))
136 mptresid 5913 . . . . . . . . . . 11 ( I ↾ ((1st𝐸)𝑤)) = (𝑘 ∈ ((1st𝐸)𝑤) ↦ 𝑘)
137135, 136syl6eqr 2874 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑘 ∈ ((1st𝐸)𝑤) ↦ ((𝑀𝑤)‘((𝑁𝑤)‘𝑘))) = ( I ↾ ((1st𝐸)𝑤)))
13886, 137eqtrd 2856 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤) ∘ (𝑁𝑤)) = ( I ↾ ((1st𝐸)𝑤)))
139 fcompt 6890 . . . . . . . . . . 11 (((𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))))
14084, 35, 139syl2anc 586 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))))
141 eqid 2821 . . . . . . . . . . . . . 14 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
14228adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝐶 ∈ Cat)
14329adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑉𝑊)
14430adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
14531adantr 483 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
146 simplrl 775 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ∈ (𝑂 Func 𝑆))
147 simplrr 776 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑤𝐵)
14881feq3d 6496 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ↔ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st)‘𝑤)))
14935, 148mpbid 234 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤):((1st𝑍)𝑤)⟶((1st)‘𝑤))
150149ffvelrnda 6846 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑀𝑤)‘𝑏) ∈ ((1st)‘𝑤))
15110, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 142, 143, 144, 145, 146, 147, 42, 150yonedalem4c 17521 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
152141, 151nat1st2nd 17215 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
153141, 152, 7natfn 17218 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) Fn 𝐵)
15482eleq2d 2898 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↔ 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆))))
155154biimpa 479 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
156141, 155nat1st2nd 17215 . . . . . . . . . . . . . 14 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
157141, 156, 7natfn 17218 . . . . . . . . . . . . 13 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑏 Fn 𝐵)
158142adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝐶 ∈ Cat)
159147adantr 483 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑤𝐵)
160 simpr 487 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑧𝐵)
16110, 6, 158, 159, 107, 160yon11 17508 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) = (𝑧(Hom ‘𝐶)𝑤))
162161eleq2d 2898 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)))
163162biimpa 479 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
164158adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝐶 ∈ Cat)
165143ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑉𝑊)
166144ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ran (Homf𝐶) ⊆ 𝑈)
167145ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
168146ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ∈ (𝑂 Func 𝑆))
169159adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑤𝐵)
170150ad2antrr 724 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) ∈ ((1st)‘𝑤))
171 simplr 767 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑧𝐵)
172 simpr 487 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤))
17310, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 42, 170, 171, 172yonedalem4b 17520 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑀𝑤)‘𝑏)))
17410, 6, 11, 5, 12, 13, 3, 14, 1, 15, 16, 164, 165, 166, 167, 168, 169, 26yonedalem3a 17518 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))) ∧ (𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤)))
175174simpld 497 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑀𝑤) = (𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤))))
176175fveq1d 6667 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) = ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏))
177155ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)))
178 fveq1 6664 . . . . . . . . . . . . . . . . . . . . . 22 (𝑎 = 𝑏 → (𝑎𝑤) = (𝑏𝑤))
179178fveq1d 6667 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑏 → ((𝑎𝑤)‘( 1𝑤)) = ((𝑏𝑤)‘( 1𝑤)))
180 fvex 6678 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏𝑤)‘( 1𝑤)) ∈ V
181179, 102, 180fvmpt 6763 . . . . . . . . . . . . . . . . . . . 20 (𝑏 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
182177, 181syl 17 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑎 ∈ (((1st𝑌)‘𝑤)(𝑂 Nat 𝑆)) ↦ ((𝑎𝑤)‘( 1𝑤)))‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
183176, 182eqtrd 2856 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑀𝑤)‘𝑏) = ((𝑏𝑤)‘( 1𝑤)))
184183fveq2d 6669 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)‘((𝑀𝑤)‘𝑏)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
185156ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
186 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (Hom ‘𝑂) = (Hom ‘𝑂)
187 eqid 2821 . . . . . . . . . . . . . . . . . . . . . 22 (comp‘𝑆) = (comp‘𝑆)
188107, 5oppchom 16979 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑤(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑤)
189172, 188eleqtrrdi 2924 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑘 ∈ (𝑤(Hom ‘𝑂)𝑧))
190141, 185, 7, 186, 187, 169, 171, 189nati 17219 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟩(comp‘𝑆)((1st)‘𝑧))((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd)𝑧)‘𝑘)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st)‘𝑤)⟩(comp‘𝑆)((1st)‘𝑧))(𝑏𝑤)))
19177ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑈 ∈ V)
192191adantr 483 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑈 ∈ V)
193192adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → 𝑈 ∈ V)
194 relfunc 17126 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Rel (𝐶 Func 𝑄)
19510, 17, 5, 12, 3, 77, 19yoncl 17506 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑𝑌 ∈ (𝐶 Func 𝑄))
196 1st2ndbr 7735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((Rel (𝐶 Func 𝑄) ∧ 𝑌 ∈ (𝐶 Func 𝑄)) → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
197194, 195, 196sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝜑 → (1st𝑌)(𝐶 Func 𝑄)(2nd𝑌))
1986, 4, 197funcf1 17130 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝜑 → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
199198ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st𝑌):𝐵⟶(𝑂 Func 𝑆))
200199, 147ffvelrnd 6847 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆))
201 1st2ndbr 7735 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑤) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
202112, 200, 201sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
2037, 121, 202funcf1 17130 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆))
20412, 191setcbas 17332 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → 𝑈 = (Base‘𝑆))
205204feq3d 6496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑤)):𝐵⟶(Base‘𝑆)))
206203, 205mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st ‘((1st𝑌)‘𝑤)):𝐵𝑈)
207206, 147ffvelrnd 6847 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) ∈ 𝑈)
208207ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) ∈ 𝑈)
209206ffvelrnda 6846 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
210209adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ∈ 𝑈)
211112, 146, 113sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
2127, 121, 211funcf1 17130 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st):𝐵⟶(Base‘𝑆))
213204feq3d 6496 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st):𝐵𝑈 ↔ (1st):𝐵⟶(Base‘𝑆)))
214212, 213mpbird 259 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (1st):𝐵𝑈)
215214ffvelrnda 6846 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((1st)‘𝑧) ∈ 𝑈)
216215adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st)‘𝑧) ∈ 𝑈)
217 eqid 2821 . . . . . . . . . . . . . . . . . . . . . . . . 25 (Hom ‘𝑆) = (Hom ‘𝑆)
218202ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st ‘((1st𝑌)‘𝑤))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑤)))
2197, 186, 217, 218, 169, 171funcf2 17132 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
220219, 189ffvelrnd 6847 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
22112, 193, 217, 208, 210elsetchom 17335 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑤))‘𝑧)) ↔ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧)))
222220, 221mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st ‘((1st𝑌)‘𝑤))‘𝑧))
223156adantr 483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → 𝑏 ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
224141, 223, 7, 217, 160natcl 17217 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)))
22512, 192, 217, 209, 215elsetchom 17335 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((𝑏𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)) ↔ (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧)))
226224, 225mpbid 234 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
227226adantr 483 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
22812, 193, 187, 208, 210, 216, 222, 227setcco 17337 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟩(comp‘𝑆)((1st)‘𝑧))((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = ((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)))
229214, 147ffvelrnd 6847 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
230229ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((1st)‘𝑤) ∈ 𝑈)
231141, 156, 7, 217, 147natcl 17217 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (𝑏𝑤) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st)‘𝑤)))
23212, 191, 217, 207, 229elsetchom 17335 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑏𝑤) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑤)(Hom ‘𝑆)((1st)‘𝑤)) ↔ (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤)))
233231, 232mpbid 234 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤))
234233ad2antrr 724 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑏𝑤):((1st ‘((1st𝑌)‘𝑤))‘𝑤)⟶((1st)‘𝑤))
235112, 168, 113sylancr 589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (1st)(𝑂 Func 𝑆)(2nd))
2367, 186, 217, 235, 169, 171funcf2 17132 . . . . . . . . . . . . . . . . . . . . . . . 24 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (𝑤(2nd)𝑧):(𝑤(Hom ‘𝑂)𝑧)⟶(((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)))
237236, 189ffvelrnd 6847 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd)𝑧)‘𝑘) ∈ (((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)))
23812, 193, 217, 230, 216elsetchom 17335 . . . . . . . . . . . . . . . . . . . . . . 23 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘) ∈ (((1st)‘𝑤)(Hom ‘𝑆)((1st)‘𝑧)) ↔ ((𝑤(2nd)𝑧)‘𝑘):((1st)‘𝑤)⟶((1st)‘𝑧)))
239237, 238mpbid 234 . . . . . . . . . . . . . . . . . . . . . 22 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑤(2nd)𝑧)‘𝑘):((1st)‘𝑤)⟶((1st)‘𝑧))
24012, 193, 187, 208, 230, 216, 234, 239setcco 17337 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)(⟨((1st ‘((1st𝑌)‘𝑤))‘𝑤), ((1st)‘𝑤)⟩(comp‘𝑆)((1st)‘𝑧))(𝑏𝑤)) = (((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤)))
241190, 228, 2403eqtr3d 2864 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)) = (((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤)))
242241fveq1d 6667 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)))
2436, 107, 11, 142, 147catidcl 16947 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
24410, 6, 142, 147, 107, 147yon11 17508 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((1st ‘((1st𝑌)‘𝑤))‘𝑤) = (𝑤(Hom ‘𝐶)𝑤))
245243, 244eleqtrrd 2916 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤))
246245ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1𝑤) ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑤))
247222, 246fvco3d 6756 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑏𝑧) ∘ ((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘))‘( 1𝑤)) = ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))))
248233, 245fvco3d 6756 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
249248ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑤(2nd)𝑧)‘𝑘) ∘ (𝑏𝑤))‘( 1𝑤)) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
250242, 247, 2493eqtr3d 2864 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))) = (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))))
251 eqid 2821 . . . . . . . . . . . . . . . . . . . . 21 (comp‘𝐶) = (comp‘𝐶)
252243ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ( 1𝑤) ∈ (𝑤(Hom ‘𝐶)𝑤))
25310, 6, 164, 169, 107, 169, 251, 171, 172, 252yon12 17509 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤)) = (( 1𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐶)𝑤)𝑘))
2546, 107, 11, 164, 171, 251, 169, 172catlid 16948 . . . . . . . . . . . . . . . . . . . 20 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (( 1𝑤)(⟨𝑧, 𝑤⟩(comp‘𝐶)𝑤)𝑘) = 𝑘)
255253, 254eqtrd 2856 . . . . . . . . . . . . . . . . . . 19 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤)) = 𝑘)
256255fveq2d 6669 . . . . . . . . . . . . . . . . . 18 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((𝑏𝑧)‘(((𝑤(2nd ‘((1st𝑌)‘𝑤))𝑧)‘𝑘)‘( 1𝑤))) = ((𝑏𝑧)‘𝑘))
257250, 256eqtr3d 2858 . . . . . . . . . . . . . . . . 17 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → (((𝑤(2nd)𝑧)‘𝑘)‘((𝑏𝑤)‘( 1𝑤))) = ((𝑏𝑧)‘𝑘))
258173, 184, 2573eqtrd 2860 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑤)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏𝑧)‘𝑘))
259163, 258syldan 593 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧)) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘) = ((𝑏𝑧)‘𝑘))
260259mpteq2dva 5154 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((𝑏𝑧)‘𝑘)))
261152adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) ∈ (⟨(1st ‘((1st𝑌)‘𝑤)), (2nd ‘((1st𝑌)‘𝑤))⟩(𝑂 Nat 𝑆)⟨(1st), (2nd)⟩))
262141, 261, 7, 217, 160natcl 17217 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)))
26312, 192, 217, 209, 215elsetchom 17335 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) ∈ (((1st ‘((1st𝑌)‘𝑤))‘𝑧)(Hom ‘𝑆)((1st)‘𝑧)) ↔ (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧)))
264262, 263mpbid 234 . . . . . . . . . . . . . . 15 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧):((1st ‘((1st𝑌)‘𝑤))‘𝑧)⟶((1st)‘𝑧))
265264feqmptd 6728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧)‘𝑘)))
266226feqmptd 6728 . . . . . . . . . . . . . 14 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (𝑏𝑧) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑤))‘𝑧) ↦ ((𝑏𝑧)‘𝑘)))
267260, 265, 2663eqtr4d 2866 . . . . . . . . . . . . 13 ((((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) ∧ 𝑧𝐵) → (((𝑁𝑤)‘((𝑀𝑤)‘𝑏))‘𝑧) = (𝑏𝑧))
268153, 157, 267eqfnfvd 6800 . . . . . . . . . . . 12 (((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) ∧ 𝑏 ∈ ((1st𝑍)𝑤)) → ((𝑁𝑤)‘((𝑀𝑤)‘𝑏)) = 𝑏)
269268mpteq2dva 5154 . . . . . . . . . . 11 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ 𝑏))
270 mptresid 5913 . . . . . . . . . . 11 ( I ↾ ((1st𝑍)𝑤)) = (𝑏 ∈ ((1st𝑍)𝑤) ↦ 𝑏)
271269, 270syl6eqr 2874 . . . . . . . . . 10 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑏 ∈ ((1st𝑍)𝑤) ↦ ((𝑁𝑤)‘((𝑀𝑤)‘𝑏))) = ( I ↾ ((1st𝑍)𝑤)))
272140, 271eqtrd 2856 . . . . . . . . 9 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑁𝑤) ∘ (𝑀𝑤)) = ( I ↾ ((1st𝑍)𝑤)))
273 fcof1o 7046 . . . . . . . . 9 ((((𝑀𝑤):((1st𝑍)𝑤)⟶((1st𝐸)𝑤) ∧ (𝑁𝑤):((1st𝐸)𝑤)⟶((1st𝑍)𝑤)) ∧ (((𝑀𝑤) ∘ (𝑁𝑤)) = ( I ↾ ((1st𝐸)𝑤)) ∧ ((𝑁𝑤) ∘ (𝑀𝑤)) = ( I ↾ ((1st𝑍)𝑤)))) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)))
27435, 84, 138, 272, 273syl22anc 836 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)))
275 eqcom 2828 . . . . . . . . 9 ((𝑀𝑤) = (𝑁𝑤) ↔ (𝑁𝑤) = (𝑀𝑤))
276275anbi2i 624 . . . . . . . 8 (((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑀𝑤) = (𝑁𝑤)) ↔ ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤)))
277274, 276sylib 220 . . . . . . 7 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤)))
278 eqid 2821 . . . . . . . . . . 11 (Base‘𝑇) = (Base‘𝑇)
279 relfunc 17126 . . . . . . . . . . . 12 Rel ((𝑄 ×c 𝑂) Func 𝑇)
280 1st2ndbr 7735 . . . . . . . . . . . 12 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝑍 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
281279, 22, 280sylancr 589 . . . . . . . . . . 11 (𝜑 → (1st𝑍)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝑍))
2828, 278, 281funcf1 17130 . . . . . . . . . 10 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
28313, 18setcbas 17332 . . . . . . . . . . 11 (𝜑𝑉 = (Base‘𝑇))
284283feq3d 6496 . . . . . . . . . 10 (𝜑 → ((1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)))
285282, 284mpbird 259 . . . . . . . . 9 (𝜑 → (1st𝑍):((𝑂 Func 𝑆) × 𝐵)⟶𝑉)
286285fovrnda 7313 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝑍)𝑤) ∈ 𝑉)
287 1st2ndbr 7735 . . . . . . . . . . . 12 ((Rel ((𝑄 ×c 𝑂) Func 𝑇) ∧ 𝐸 ∈ ((𝑄 ×c 𝑂) Func 𝑇)) → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
288279, 23, 287sylancr 589 . . . . . . . . . . 11 (𝜑 → (1st𝐸)((𝑄 ×c 𝑂) Func 𝑇)(2nd𝐸))
2898, 278, 288funcf1 17130 . . . . . . . . . 10 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇))
290283feq3d 6496 . . . . . . . . . 10 (𝜑 → ((1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉 ↔ (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶(Base‘𝑇)))
291289, 290mpbird 259 . . . . . . . . 9 (𝜑 → (1st𝐸):((𝑂 Func 𝑆) × 𝐵)⟶𝑉)
292291fovrnda 7313 . . . . . . . 8 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((1st𝐸)𝑤) ∈ 𝑉)
29313, 29, 286, 292, 25setcinv 17344 . . . . . . 7 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → ((𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤) ↔ ((𝑀𝑤):((1st𝑍)𝑤)–1-1-onto→((1st𝐸)𝑤) ∧ (𝑁𝑤) = (𝑀𝑤))))
294277, 293mpbird 259 . . . . . 6 ((𝜑 ∧ ( ∈ (𝑂 Func 𝑆) ∧ 𝑤𝐵)) → (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
295294ralrimivva 3191 . . . . 5 (𝜑 → ∀ ∈ (𝑂 Func 𝑆)∀𝑤𝐵 (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
296 fveq2 6665 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → (𝑀𝑧) = (𝑀‘⟨, 𝑤⟩))
297 df-ov 7153 . . . . . . . 8 (𝑀𝑤) = (𝑀‘⟨, 𝑤⟩)
298296, 297syl6eqr 2874 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (𝑀𝑧) = (𝑀𝑤))
299 fveq2 6665 . . . . . . . . 9 (𝑧 = ⟨, 𝑤⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)‘⟨, 𝑤⟩))
300 df-ov 7153 . . . . . . . . 9 ((1st𝑍)𝑤) = ((1st𝑍)‘⟨, 𝑤⟩)
301299, 300syl6eqr 2874 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → ((1st𝑍)‘𝑧) = ((1st𝑍)𝑤))
302 fveq2 6665 . . . . . . . . 9 (𝑧 = ⟨, 𝑤⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)‘⟨, 𝑤⟩))
303 df-ov 7153 . . . . . . . . 9 ((1st𝐸)𝑤) = ((1st𝐸)‘⟨, 𝑤⟩)
304302, 303syl6eqr 2874 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → ((1st𝐸)‘𝑧) = ((1st𝐸)𝑤))
305301, 304oveq12d 7168 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧)) = (((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤)))
306 fveq2 6665 . . . . . . . 8 (𝑧 = ⟨, 𝑤⟩ → (𝑁𝑧) = (𝑁‘⟨, 𝑤⟩))
307 df-ov 7153 . . . . . . . 8 (𝑁𝑤) = (𝑁‘⟨, 𝑤⟩)
308306, 307syl6eqr 2874 . . . . . . 7 (𝑧 = ⟨, 𝑤⟩ → (𝑁𝑧) = (𝑁𝑤))
309298, 305, 308breq123d 5073 . . . . . 6 (𝑧 = ⟨, 𝑤⟩ → ((𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧) ↔ (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤)))
310309ralxp 5707 . . . . 5 (∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧) ↔ ∀ ∈ (𝑂 Func 𝑆)∀𝑤𝐵 (𝑀𝑤)(((1st𝑍)𝑤)(Inv‘𝑇)((1st𝐸)𝑤))(𝑁𝑤))
311295, 310sylibr 236 . . . 4 (𝜑 → ∀𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)(𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧))
312311r19.21bi 3208 . . 3 ((𝜑𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵)) → (𝑀𝑧)(((1st𝑍)‘𝑧)(Inv‘𝑇)((1st𝐸)‘𝑧))(𝑁𝑧))
3131, 8, 9, 22, 23, 24, 25, 27, 312invfuc 17238 . 2 (𝜑𝑀(𝑍𝐼𝐸)(𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧)))
314 fvex 6678 . . . . 5 ((1st𝑓)‘𝑥) ∈ V
315314mptex 6980 . . . 4 (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))) ∈ V
31642, 315fnmpoi 7762 . . 3 𝑁 Fn ((𝑂 Func 𝑆) × 𝐵)
317 dffn5 6719 . . 3 (𝑁 Fn ((𝑂 Func 𝑆) × 𝐵) ↔ 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧)))
318316, 317mpbi 232 . 2 𝑁 = (𝑧 ∈ ((𝑂 Func 𝑆) × 𝐵) ↦ (𝑁𝑧))
319313, 318breqtrrdi 5101 1 (𝜑𝑀(𝑍𝐼𝐸)𝑁)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  wral 3138  Vcvv 3495  cun 3934  wss 3936  cop 4567   class class class wbr 5059  cmpt 5139   I cid 5454   × cxp 5548  ccnv 5549  ran crn 5551  cres 5552  ccom 5554  Rel wrel 5555   Fn wfn 6345  wf 6346  1-1-ontowf1o 6349  cfv 6350  (class class class)co 7150  cmpo 7152  1st c1st 7681  2nd c2nd 7682  tpos ctpos 7885  Basecbs 16477  Hom chom 16570  compcco 16571  Catccat 16929  Idccid 16930  Homf chomf 16931  oppCatcoppc 16975  Invcinv 17009   Func cfunc 17118  func ccofu 17120   Nat cnat 17205   FuncCat cfuc 17206  SetCatcsetc 17329   ×c cxpc 17412   1stF c1stf 17413   2ndF c2ndf 17414   ⟨,⟩F cprf 17415   evalF cevlf 17453  HomFchof 17492  Yoncyon 17493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-hom 16583  df-cco 16584  df-cat 16933  df-cid 16934  df-homf 16935  df-comf 16936  df-oppc 16976  df-sect 17011  df-inv 17012  df-ssc 17074  df-resc 17075  df-subc 17076  df-func 17122  df-cofu 17124  df-nat 17207  df-fuc 17208  df-setc 17330  df-xpc 17416  df-1stf 17417  df-2ndf 17418  df-prf 17419  df-evlf 17457  df-curf 17458  df-hof 17494  df-yon 17495
This theorem is referenced by:  yonffthlem  17526  yoneda  17527
  Copyright terms: Public domain W3C validator