MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  yonedalem4c Structured version   Visualization version   GIF version

Theorem yonedalem4c 16849
Description: Lemma for yoneda 16855. (Contributed by Mario Carneiro, 29-Jan-2017.)
Hypotheses
Ref Expression
yoneda.y 𝑌 = (Yon‘𝐶)
yoneda.b 𝐵 = (Base‘𝐶)
yoneda.1 1 = (Id‘𝐶)
yoneda.o 𝑂 = (oppCat‘𝐶)
yoneda.s 𝑆 = (SetCat‘𝑈)
yoneda.t 𝑇 = (SetCat‘𝑉)
yoneda.q 𝑄 = (𝑂 FuncCat 𝑆)
yoneda.h 𝐻 = (HomF𝑄)
yoneda.r 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
yoneda.e 𝐸 = (𝑂 evalF 𝑆)
yoneda.z 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
yoneda.c (𝜑𝐶 ∈ Cat)
yoneda.w (𝜑𝑉𝑊)
yoneda.u (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
yoneda.v (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
yonedalem21.f (𝜑𝐹 ∈ (𝑂 Func 𝑆))
yonedalem21.x (𝜑𝑋𝐵)
yonedalem4.n 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
yonedalem4.p (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
Assertion
Ref Expression
yonedalem4c (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 1   𝑢,𝑔,𝐴,𝑦   𝑢,𝑓,𝐶,𝑔,𝑥,𝑦   𝑓,𝐸,𝑔,𝑢,𝑦   𝑓,𝐹,𝑔,𝑢,𝑥,𝑦   𝐵,𝑓,𝑔,𝑢,𝑥,𝑦   𝑓,𝑂,𝑔,𝑢,𝑥,𝑦   𝑆,𝑓,𝑔,𝑢,𝑥,𝑦   𝑄,𝑓,𝑔,𝑢,𝑥   𝑇,𝑓,𝑔,𝑢,𝑦   𝜑,𝑓,𝑔,𝑢,𝑥,𝑦   𝑢,𝑅   𝑓,𝑌,𝑔,𝑢,𝑥,𝑦   𝑓,𝑍,𝑔,𝑢,𝑥,𝑦   𝑓,𝑋,𝑔,𝑢,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝑄(𝑦)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑇(𝑥)   𝑈(𝑥,𝑦,𝑢,𝑓,𝑔)   1 (𝑢)   𝐸(𝑥)   𝐻(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑁(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑉(𝑥,𝑦,𝑢,𝑓,𝑔)   𝑊(𝑥,𝑦,𝑢,𝑓,𝑔)

Proof of Theorem yonedalem4c
Dummy variables 𝑘 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 yoneda.y . . . . 5 𝑌 = (Yon‘𝐶)
2 yoneda.b . . . . 5 𝐵 = (Base‘𝐶)
3 yoneda.1 . . . . 5 1 = (Id‘𝐶)
4 yoneda.o . . . . 5 𝑂 = (oppCat‘𝐶)
5 yoneda.s . . . . 5 𝑆 = (SetCat‘𝑈)
6 yoneda.t . . . . 5 𝑇 = (SetCat‘𝑉)
7 yoneda.q . . . . 5 𝑄 = (𝑂 FuncCat 𝑆)
8 yoneda.h . . . . 5 𝐻 = (HomF𝑄)
9 yoneda.r . . . . 5 𝑅 = ((𝑄 ×c 𝑂) FuncCat 𝑇)
10 yoneda.e . . . . 5 𝐸 = (𝑂 evalF 𝑆)
11 yoneda.z . . . . 5 𝑍 = (𝐻func ((⟨(1st𝑌), tpos (2nd𝑌)⟩ ∘func (𝑄 2ndF 𝑂)) ⟨,⟩F (𝑄 1stF 𝑂)))
12 yoneda.c . . . . 5 (𝜑𝐶 ∈ Cat)
13 yoneda.w . . . . 5 (𝜑𝑉𝑊)
14 yoneda.u . . . . 5 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
15 yoneda.v . . . . 5 (𝜑 → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
16 yonedalem21.f . . . . 5 (𝜑𝐹 ∈ (𝑂 Func 𝑆))
17 yonedalem21.x . . . . 5 (𝜑𝑋𝐵)
18 yonedalem4.n . . . . 5 𝑁 = (𝑓 ∈ (𝑂 Func 𝑆), 𝑥𝐵 ↦ (𝑢 ∈ ((1st𝑓)‘𝑥) ↦ (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑥) ↦ (((𝑥(2nd𝑓)𝑦)‘𝑔)‘𝑢)))))
19 yonedalem4.p . . . . 5 (𝜑𝐴 ∈ ((1st𝐹)‘𝑋))
201, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19yonedalem4a 16847 . . . 4 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))))
21 oveq1 6617 . . . . . 6 (𝑦 = 𝑧 → (𝑦(Hom ‘𝐶)𝑋) = (𝑧(Hom ‘𝐶)𝑋))
22 oveq2 6618 . . . . . . . 8 (𝑦 = 𝑧 → (𝑋(2nd𝐹)𝑦) = (𝑋(2nd𝐹)𝑧))
2322fveq1d 6155 . . . . . . 7 (𝑦 = 𝑧 → ((𝑋(2nd𝐹)𝑦)‘𝑔) = ((𝑋(2nd𝐹)𝑧)‘𝑔))
2423fveq1d 6155 . . . . . 6 (𝑦 = 𝑧 → (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴) = (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))
2521, 24mpteq12dv 4698 . . . . 5 (𝑦 = 𝑧 → (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴)) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
2625cbvmptv 4715 . . . 4 (𝑦𝐵 ↦ (𝑔 ∈ (𝑦(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑦)‘𝑔)‘𝐴))) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
2720, 26syl6eq 2671 . . 3 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))))
284, 2oppcbas 16310 . . . . . . . . . . . . 13 𝐵 = (Base‘𝑂)
29 eqid 2621 . . . . . . . . . . . . 13 (Hom ‘𝑂) = (Hom ‘𝑂)
30 eqid 2621 . . . . . . . . . . . . 13 (Hom ‘𝑆) = (Hom ‘𝑆)
31 relfunc 16454 . . . . . . . . . . . . . . 15 Rel (𝑂 Func 𝑆)
32 1st2ndbr 7169 . . . . . . . . . . . . . . 15 ((Rel (𝑂 Func 𝑆) ∧ 𝐹 ∈ (𝑂 Func 𝑆)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3331, 16, 32sylancr 694 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3433adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
3517adantr 481 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑋𝐵)
36 simpr 477 . . . . . . . . . . . . 13 ((𝜑𝑧𝐵) → 𝑧𝐵)
3728, 29, 30, 34, 35, 36funcf2 16460 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
3837adantr 481 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
39 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋))
40 eqid 2621 . . . . . . . . . . . . 13 (Hom ‘𝐶) = (Hom ‘𝐶)
4140, 4oppchom 16307 . . . . . . . . . . . 12 (𝑋(Hom ‘𝑂)𝑧) = (𝑧(Hom ‘𝐶)𝑋)
4239, 41syl6eleqr 2709 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑔 ∈ (𝑋(Hom ‘𝑂)𝑧))
4338, 42ffvelrnd 6321 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
4415unssbd 3774 . . . . . . . . . . . . . 14 (𝜑𝑈𝑉)
4513, 44ssexd 4770 . . . . . . . . . . . . 13 (𝜑𝑈 ∈ V)
4645adantr 481 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → 𝑈 ∈ V)
4746adantr 481 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑈 ∈ V)
48 eqid 2621 . . . . . . . . . . . . . . 15 (Base‘𝑆) = (Base‘𝑆)
4928, 48, 33funcf1 16458 . . . . . . . . . . . . . 14 (𝜑 → (1st𝐹):𝐵⟶(Base‘𝑆))
505, 45setcbas 16660 . . . . . . . . . . . . . . 15 (𝜑𝑈 = (Base‘𝑆))
5150feq3d 5994 . . . . . . . . . . . . . 14 (𝜑 → ((1st𝐹):𝐵𝑈 ↔ (1st𝐹):𝐵⟶(Base‘𝑆)))
5249, 51mpbird 247 . . . . . . . . . . . . 13 (𝜑 → (1st𝐹):𝐵𝑈)
5352, 17ffvelrnd 6321 . . . . . . . . . . . 12 (𝜑 → ((1st𝐹)‘𝑋) ∈ 𝑈)
5453ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
5552ffvelrnda 6320 . . . . . . . . . . . 12 ((𝜑𝑧𝐵) → ((1st𝐹)‘𝑧) ∈ 𝑈)
5655adantr 481 . . . . . . . . . . 11 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑧) ∈ 𝑈)
575, 47, 30, 54, 56elsetchom 16663 . . . . . . . . . 10 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑔) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ((𝑋(2nd𝐹)𝑧)‘𝑔):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧)))
5843, 57mpbid 222 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑔):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧))
5919ad2antrr 761 . . . . . . . . 9 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐴 ∈ ((1st𝐹)‘𝑋))
6058, 59ffvelrnd 6321 . . . . . . . 8 (((𝜑𝑧𝐵) ∧ 𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴) ∈ ((1st𝐹)‘𝑧))
61 eqid 2621 . . . . . . . 8 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))
6260, 61fmptd 6346 . . . . . . 7 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):(𝑧(Hom ‘𝐶)𝑋)⟶((1st𝐹)‘𝑧))
6312adantr 481 . . . . . . . . 9 ((𝜑𝑧𝐵) → 𝐶 ∈ Cat)
641, 2, 63, 35, 40, 36yon11 16836 . . . . . . . 8 ((𝜑𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = (𝑧(Hom ‘𝐶)𝑋))
6564feq2d 5993 . . . . . . 7 ((𝜑𝑧𝐵) → ((𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):(𝑧(Hom ‘𝐶)𝑋)⟶((1st𝐹)‘𝑧)))
6662, 65mpbird 247 . . . . . 6 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
671, 2, 12, 17, 4, 5, 45, 14yon1cl 16835 . . . . . . . . . . 11 (𝜑 → ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆))
68 1st2ndbr 7169 . . . . . . . . . . 11 ((Rel (𝑂 Func 𝑆) ∧ ((1st𝑌)‘𝑋) ∈ (𝑂 Func 𝑆)) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
6931, 67, 68sylancr 694 . . . . . . . . . 10 (𝜑 → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
7028, 48, 69funcf1 16458 . . . . . . . . 9 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆))
7150feq3d 5994 . . . . . . . . 9 (𝜑 → ((1st ‘((1st𝑌)‘𝑋)):𝐵𝑈 ↔ (1st ‘((1st𝑌)‘𝑋)):𝐵⟶(Base‘𝑆)))
7270, 71mpbird 247 . . . . . . . 8 (𝜑 → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
7372ffvelrnda 6320 . . . . . . 7 ((𝜑𝑧𝐵) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ∈ 𝑈)
745, 46, 30, 73, 55elsetchom 16663 . . . . . 6 ((𝜑𝑧𝐵) → ((𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)))
7566, 74mpbird 247 . . . . 5 ((𝜑𝑧𝐵) → (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
7675ralrimiva 2961 . . . 4 (𝜑 → ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
77 fvex 6163 . . . . . 6 (Base‘𝐶) ∈ V
782, 77eqeltri 2694 . . . . 5 𝐵 ∈ V
79 mptelixpg 7897 . . . . 5 (𝐵 ∈ V → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧))))
8078, 79ax-mp 5 . . . 4 ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ∀𝑧𝐵 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8176, 80sylibr 224 . . 3 (𝜑 → (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8227, 81eqeltrd 2698 . 2 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
8312adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝐶 ∈ Cat)
8417adantr 481 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑋𝐵)
85 simpr1 1065 . . . . . . . . . 10 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑧𝐵)
861, 2, 83, 84, 40, 85yon11 16836 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = (𝑧(Hom ‘𝐶)𝑋))
8786eleq2d 2684 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↔ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)))
8887biimpa 501 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋))
89 eqid 2621 . . . . . . . . . . . 12 (comp‘𝑂) = (comp‘𝑂)
90 eqid 2621 . . . . . . . . . . . 12 (comp‘𝑆) = (comp‘𝑆)
9133adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
9291adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (1st𝐹)(𝑂 Func 𝑆)(2nd𝐹))
9384adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑋𝐵)
9485adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑧𝐵)
95 simpr2 1066 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑤𝐵)
9695adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑤𝐵)
97 simpr 477 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋))
9897, 41syl6eleqr 2709 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑘 ∈ (𝑋(Hom ‘𝑂)𝑧))
99 simplr3 1103 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ∈ (𝑧(Hom ‘𝑂)𝑤))
10028, 29, 89, 90, 92, 93, 94, 96, 98, 99funcco 16463 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑋(2nd𝐹)𝑧)‘𝑘)))
101 eqid 2621 . . . . . . . . . . . . 13 (comp‘𝐶) = (comp‘𝐶)
1022, 101, 4, 93, 94, 96oppcco 16309 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘) = (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))
103102fveq2d 6157 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘((⟨𝑋, 𝑧⟩(comp‘𝑂)𝑤)𝑘)) = ((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))))
10445adantr 481 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → 𝑈 ∈ V)
105104adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑈 ∈ V)
10653ad2antrr 761 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑋) ∈ 𝑈)
107553ad2antr1 1224 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st𝐹)‘𝑧) ∈ 𝑈)
108107adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑧) ∈ 𝑈)
10952adantr 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st𝐹):𝐵𝑈)
110109, 95ffvelrnd 6321 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st𝐹)‘𝑤) ∈ 𝑈)
111110adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((1st𝐹)‘𝑤) ∈ 𝑈)
11228, 29, 30, 91, 84, 85funcf2 16460 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
113112adantr 481 . . . . . . . . . . . . . 14 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑋(2nd𝐹)𝑧):(𝑋(Hom ‘𝑂)𝑧)⟶(((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
114113, 98ffvelrnd 6321 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑘) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)))
1155, 105, 30, 106, 108elsetchom 16663 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑧)‘𝑘) ∈ (((1st𝐹)‘𝑋)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ↔ ((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧)))
116114, 115mpbid 222 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧))
11728, 29, 30, 91, 85, 95funcf2 16460 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑧(2nd𝐹)𝑤):(𝑧(Hom ‘𝑂)𝑤)⟶(((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)))
118 simpr3 1067 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ∈ (𝑧(Hom ‘𝑂)𝑤))
119117, 118ffvelrnd 6321 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd𝐹)𝑤)‘) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)))
1205, 104, 30, 107, 110elsetchom 16663 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘) ∈ (((1st𝐹)‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑤)) ↔ ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤)))
121119, 120mpbid 222 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤))
122121adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤))
1235, 105, 90, 106, 108, 111, 116, 122setcco 16665 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st𝐹)‘𝑋), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑋(2nd𝐹)𝑧)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘)))
124100, 103, 1233eqtr3d 2663 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))) = (((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘)))
125124fveq1d 6155 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴) = ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴))
12619ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐴 ∈ ((1st𝐹)‘𝑋))
127 fvco3 6237 . . . . . . . . . 10 ((((𝑋(2nd𝐹)𝑧)‘𝑘):((1st𝐹)‘𝑋)⟶((1st𝐹)‘𝑧) ∧ 𝐴 ∈ ((1st𝐹)‘𝑋)) → ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
128116, 126, 127syl2anc 692 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝑧(2nd𝐹)𝑤)‘) ∘ ((𝑋(2nd𝐹)𝑧)‘𝑘))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
129125, 128eqtrd 2655 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
13083adantr 481 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐶 ∈ Cat)
13140, 4oppchom 16307 . . . . . . . . . . . 12 (𝑧(Hom ‘𝑂)𝑤) = (𝑤(Hom ‘𝐶)𝑧)
13299, 131syl6eleq 2708 . . . . . . . . . . 11 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ∈ (𝑤(Hom ‘𝐶)𝑧))
1331, 2, 130, 93, 40, 94, 101, 96, 132, 97yon12 16837 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘) = (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))
134133fveq2d 6157 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))))
13513ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝑉𝑊)
13614ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ran (Homf𝐶) ⊆ 𝑈)
13715ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (ran (Homf𝑄) ∪ 𝑈) ⊆ 𝑉)
13816ad2antrr 761 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → 𝐹 ∈ (𝑂 Func 𝑆))
1392, 40, 101, 130, 96, 94, 93, 132, 97catcocl 16278 . . . . . . . . . 10 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)) ∈ (𝑤(Hom ‘𝐶)𝑋))
1401, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 130, 135, 136, 137, 138, 93, 18, 126, 96, 139yonedalem4b 16848 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋))) = (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴))
141134, 140eqtrd 2655 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑋(2nd𝐹)𝑤)‘(𝑘(⟨𝑤, 𝑧⟩(comp‘𝐶)𝑋)))‘𝐴))
1421, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 130, 135, 136, 137, 138, 93, 18, 126, 94, 97yonedalem4b 16848 . . . . . . . . 9 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘) = (((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴))
143142fveq2d 6157 . . . . . . . 8 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘(((𝑋(2nd𝐹)𝑧)‘𝑘)‘𝐴)))
144129, 141, 1433eqtr4d 2665 . . . . . . 7 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ (𝑧(Hom ‘𝐶)𝑋)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)))
14588, 144syldan 487 . . . . . 6 (((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) ∧ 𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘)) = (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘)))
146145mpteq2dva 4709 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
14727fveq1d 6155 . . . . . . . . . . . 12 (𝜑 → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧))
148 ovex 6638 . . . . . . . . . . . . . 14 (𝑧(Hom ‘𝐶)𝑋) ∈ V
149148mptex 6446 . . . . . . . . . . . . 13 (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ V
150 eqid 2621 . . . . . . . . . . . . . 14 (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴))) = (𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
151150fvmpt2 6253 . . . . . . . . . . . . 13 ((𝑧𝐵 ∧ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)) ∈ V) → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
152149, 151mpan2 706 . . . . . . . . . . . 12 (𝑧𝐵 → ((𝑧𝐵 ↦ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
153147, 152sylan9eq 2675 . . . . . . . . . . 11 ((𝜑𝑧𝐵) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)))
154153feq1d 5992 . . . . . . . . . 10 ((𝜑𝑧𝐵) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (𝑔 ∈ (𝑧(Hom ‘𝐶)𝑋) ↦ (((𝑋(2nd𝐹)𝑧)‘𝑔)‘𝐴)):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)))
15566, 154mpbird 247 . . . . . . . . 9 ((𝜑𝑧𝐵) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
156155ralrimiva 2961 . . . . . . . 8 (𝜑 → ∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
157156adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
158 fveq2 6153 . . . . . . . . 9 (𝑧 = 𝑤 → (((𝐹𝑁𝑋)‘𝐴)‘𝑧) = (((𝐹𝑁𝑋)‘𝐴)‘𝑤))
159 fveq2 6153 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) = ((1st ‘((1st𝑌)‘𝑋))‘𝑤))
160 fveq2 6153 . . . . . . . . 9 (𝑧 = 𝑤 → ((1st𝐹)‘𝑧) = ((1st𝐹)‘𝑤))
161158, 159, 160feq123d 5996 . . . . . . . 8 (𝑧 = 𝑤 → ((((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) ↔ (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤)))
162161rspcv 3294 . . . . . . 7 (𝑤𝐵 → (∀𝑧𝐵 (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧) → (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤)))
16395, 157, 162sylc 65 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤))
16469adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st ‘((1st𝑌)‘𝑋))(𝑂 Func 𝑆)(2nd ‘((1st𝑌)‘𝑋)))
16528, 29, 30, 164, 85, 95funcf2 16460 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤):(𝑧(Hom ‘𝑂)𝑤)⟶(((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
166165, 118ffvelrnd 6321 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
167733ad2antr1 1224 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ∈ 𝑈)
16872adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (1st ‘((1st𝑌)‘𝑋)):𝐵𝑈)
169168, 95ffvelrnd 6321 . . . . . . . 8 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((1st ‘((1st𝑌)‘𝑋))‘𝑤) ∈ 𝑈)
1705, 104, 30, 167, 169elsetchom 16663 . . . . . . 7 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘) ∈ (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st ‘((1st𝑌)‘𝑋))‘𝑤)) ↔ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤)))
171166, 170mpbid 222 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤))
172 fcompt 6360 . . . . . 6 (((((𝐹𝑁𝑋)‘𝐴)‘𝑤):((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟶((1st𝐹)‘𝑤) ∧ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st ‘((1st𝑌)‘𝑋))‘𝑤)) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))))
173163, 171, 172syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)‘(((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)‘𝑘))))
1741553ad2antr1 1224 . . . . . 6 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧))
175 fcompt 6360 . . . . . 6 ((((𝑧(2nd𝐹)𝑤)‘):((1st𝐹)‘𝑧)⟶((1st𝐹)‘𝑤) ∧ (((𝐹𝑁𝑋)‘𝐴)‘𝑧):((1st ‘((1st𝑌)‘𝑋))‘𝑧)⟶((1st𝐹)‘𝑧)) → (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
176121, 174, 175syl2anc 692 . . . . 5 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (𝑘 ∈ ((1st ‘((1st𝑌)‘𝑋))‘𝑧) ↦ (((𝑧(2nd𝐹)𝑤)‘)‘((((𝐹𝑁𝑋)‘𝐴)‘𝑧)‘𝑘))))
177146, 173, 1763eqtr4d 2665 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
1785, 104, 90, 167, 169, 110, 171, 163setcco 16665 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = ((((𝐹𝑁𝑋)‘𝐴)‘𝑤) ∘ ((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)))
1795, 104, 90, 167, 107, 110, 174, 121setcco 16665 . . . 4 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)) = (((𝑧(2nd𝐹)𝑤)‘) ∘ (((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
180177, 178, 1793eqtr4d 2665 . . 3 ((𝜑 ∧ (𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤))) → ((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
181180ralrimivvva 2967 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤)((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))
182 eqid 2621 . . 3 (𝑂 Nat 𝑆) = (𝑂 Nat 𝑆)
183182, 28, 29, 30, 90, 67, 16isnat2 16540 . 2 (𝜑 → (((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹) ↔ (((𝐹𝑁𝑋)‘𝐴) ∈ X𝑧𝐵 (((1st ‘((1st𝑌)‘𝑋))‘𝑧)(Hom ‘𝑆)((1st𝐹)‘𝑧)) ∧ ∀𝑧𝐵𝑤𝐵 ∈ (𝑧(Hom ‘𝑂)𝑤)((((𝐹𝑁𝑋)‘𝐴)‘𝑤)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st ‘((1st𝑌)‘𝑋))‘𝑤)⟩(comp‘𝑆)((1st𝐹)‘𝑤))((𝑧(2nd ‘((1st𝑌)‘𝑋))𝑤)‘)) = (((𝑧(2nd𝐹)𝑤)‘)(⟨((1st ‘((1st𝑌)‘𝑋))‘𝑧), ((1st𝐹)‘𝑧)⟩(comp‘𝑆)((1st𝐹)‘𝑤))(((𝐹𝑁𝑋)‘𝐴)‘𝑧)))))
18482, 181, 183mpbir2and 956 1 (𝜑 → ((𝐹𝑁𝑋)‘𝐴) ∈ (((1st𝑌)‘𝑋)(𝑂 Nat 𝑆)𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3189  cun 3557  wss 3559  cop 4159   class class class wbr 4618  cmpt 4678  ran crn 5080  ccom 5083  Rel wrel 5084  wf 5848  cfv 5852  (class class class)co 6610  cmpt2 6612  1st c1st 7118  2nd c2nd 7119  tpos ctpos 7303  Xcixp 7860  Basecbs 15792  Hom chom 15884  compcco 15885  Catccat 16257  Idccid 16258  Homf chomf 16259  oppCatcoppc 16303   Func cfunc 16446  func ccofu 16448   Nat cnat 16533   FuncCat cfuc 16534  SetCatcsetc 16657   ×c cxpc 16740   1stF c1stf 16741   2ndF c2ndf 16742   ⟨,⟩F cprf 16743   evalF cevlf 16781  HomFchof 16820  Yoncyon 16821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-tpos 7304  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-hom 15898  df-cco 15899  df-cat 16261  df-cid 16262  df-homf 16263  df-comf 16264  df-oppc 16304  df-func 16450  df-nat 16535  df-fuc 16536  df-setc 16658  df-xpc 16744  df-curf 16786  df-hof 16822  df-yon 16823
This theorem is referenced by:  yonedainv  16853
  Copyright terms: Public domain W3C validator