MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  z2ge Structured version   Visualization version   GIF version

Theorem z2ge 11972
Description: There exists an integer greater than or equal to any two others. (Contributed by NM, 28-Aug-2005.)
Assertion
Ref Expression
z2ge ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Distinct variable groups:   𝑘,𝑀   𝑘,𝑁

Proof of Theorem z2ge
StepHypRef Expression
1 ifcl 4102 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
21ancoms 469 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ)
3 zre 11325 . . 3 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
4 zre 11325 . . 3 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
5 max1 11959 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀))
6 max2 11961 . . . 4 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))
75, 6jca 554 . . 3 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
83, 4, 7syl2an 494 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
9 breq2 4617 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑀𝑘𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
10 breq2 4617 . . . 4 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → (𝑁𝑘𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀)))
119, 10anbi12d 746 . . 3 (𝑘 = if(𝑀𝑁, 𝑁, 𝑀) → ((𝑀𝑘𝑁𝑘) ↔ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))))
1211rspcev 3295 . 2 ((if(𝑀𝑁, 𝑁, 𝑀) ∈ ℤ ∧ (𝑀 ≤ if(𝑀𝑁, 𝑁, 𝑀) ∧ 𝑁 ≤ if(𝑀𝑁, 𝑁, 𝑀))) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
132, 8, 12syl2anc 692 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑘 ∈ ℤ (𝑀𝑘𝑁𝑘))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wrex 2908  ifcif 4058   class class class wbr 4613  cr 9879  cle 10019  cz 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-pre-lttri 9954  ax-pre-lttrn 9955
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-po 4995  df-so 4996  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-neg 10213  df-z 11322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator