MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zabsle1 Structured version   Visualization version   GIF version

Theorem zabsle1 24921
Description: {-1, 0, 1} is the set of all integers with absolute value at most 1. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
zabsle1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))

Proof of Theorem zabsle1
StepHypRef Expression
1 eltpi 4200 . . 3 (𝑍 ∈ {-1, 0, 1} → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2 fveq2 6148 . . . . 5 (𝑍 = -1 → (abs‘𝑍) = (abs‘-1))
3 ax-1cn 9938 . . . . . . . 8 1 ∈ ℂ
43absnegi 14073 . . . . . . 7 (abs‘-1) = (abs‘1)
5 abs1 13971 . . . . . . 7 (abs‘1) = 1
64, 5eqtri 2643 . . . . . 6 (abs‘-1) = 1
7 1le1 10599 . . . . . 6 1 ≤ 1
86, 7eqbrtri 4634 . . . . 5 (abs‘-1) ≤ 1
92, 8syl6eqbr 4652 . . . 4 (𝑍 = -1 → (abs‘𝑍) ≤ 1)
10 fveq2 6148 . . . . 5 (𝑍 = 0 → (abs‘𝑍) = (abs‘0))
11 abs0 13959 . . . . . 6 (abs‘0) = 0
12 0le1 10495 . . . . . 6 0 ≤ 1
1311, 12eqbrtri 4634 . . . . 5 (abs‘0) ≤ 1
1410, 13syl6eqbr 4652 . . . 4 (𝑍 = 0 → (abs‘𝑍) ≤ 1)
15 fveq2 6148 . . . . 5 (𝑍 = 1 → (abs‘𝑍) = (abs‘1))
165, 7eqbrtri 4634 . . . . 5 (abs‘1) ≤ 1
1715, 16syl6eqbr 4652 . . . 4 (𝑍 = 1 → (abs‘𝑍) ≤ 1)
189, 14, 173jaoi 1388 . . 3 ((𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1) → (abs‘𝑍) ≤ 1)
191, 18syl 17 . 2 (𝑍 ∈ {-1, 0, 1} → (abs‘𝑍) ≤ 1)
20 zre 11325 . . . 4 (𝑍 ∈ ℤ → 𝑍 ∈ ℝ)
21 1red 9999 . . . 4 (𝑍 ∈ ℤ → 1 ∈ ℝ)
2220, 21absled 14103 . . 3 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 ↔ (-1 ≤ 𝑍𝑍 ≤ 1)))
23 elz 11323 . . . 4 (𝑍 ∈ ℤ ↔ (𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)))
24 3mix2 1229 . . . . . . . . . 10 (𝑍 = 0 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2524a1d 25 . . . . . . . . 9 (𝑍 = 0 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
26 nnle1eq1 10992 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℕ → (𝑍 ≤ 1 ↔ 𝑍 = 1))
2726biimpac 503 . . . . . . . . . . . . . 14 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → 𝑍 = 1)
28273mix3d 1236 . . . . . . . . . . . . 13 ((𝑍 ≤ 1 ∧ 𝑍 ∈ ℕ) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
2928ex 450 . . . . . . . . . . . 12 (𝑍 ≤ 1 → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3029adantl 482 . . . . . . . . . . 11 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3130adantl 482 . . . . . . . . . 10 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ ℕ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
3231com12 32 . . . . . . . . 9 (𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
33 elnnz1 11347 . . . . . . . . . 10 (-𝑍 ∈ ℕ ↔ (-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍))
34 1red 9999 . . . . . . . . . . . . . . 15 (𝑍 ∈ ℝ → 1 ∈ ℝ)
35 lenegcon2 10477 . . . . . . . . . . . . . . 15 ((1 ∈ ℝ ∧ 𝑍 ∈ ℝ) → (1 ≤ -𝑍𝑍 ≤ -1))
3634, 35mpancom 702 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (1 ≤ -𝑍𝑍 ≤ -1))
37 neg1rr 11069 . . . . . . . . . . . . . . . . . . . . 21 -1 ∈ ℝ
3837a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → -1 ∈ ℝ)
39 id 22 . . . . . . . . . . . . . . . . . . . 20 (𝑍 ∈ ℝ → 𝑍 ∈ ℝ)
4038, 39letri3d 10123 . . . . . . . . . . . . . . . . . . 19 (𝑍 ∈ ℝ → (-1 = 𝑍 ↔ (-1 ≤ 𝑍𝑍 ≤ -1)))
41 3mix1 1228 . . . . . . . . . . . . . . . . . . . 20 (𝑍 = -1 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4241eqcoms 2629 . . . . . . . . . . . . . . . . . . 19 (-1 = 𝑍 → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
4340, 42syl6bir 244 . . . . . . . . . . . . . . . . . 18 (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4443com12 32 . . . . . . . . . . . . . . . . 17 ((-1 ≤ 𝑍𝑍 ≤ -1) → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
4544ex 450 . . . . . . . . . . . . . . . 16 (-1 ≤ 𝑍 → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4645adantr 481 . . . . . . . . . . . . . . 15 ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 ≤ -1 → (𝑍 ∈ ℝ → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4746com13 88 . . . . . . . . . . . . . 14 (𝑍 ∈ ℝ → (𝑍 ≤ -1 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4836, 47sylbid 230 . . . . . . . . . . . . 13 (𝑍 ∈ ℝ → (1 ≤ -𝑍 → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
4948com12 32 . . . . . . . . . . . 12 (1 ≤ -𝑍 → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))))
5049impd 447 . . . . . . . . . . 11 (1 ≤ -𝑍 → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5150adantl 482 . . . . . . . . . 10 ((-𝑍 ∈ ℤ ∧ 1 ≤ -𝑍) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5233, 51sylbi 207 . . . . . . . . 9 (-𝑍 ∈ ℕ → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5325, 32, 523jaoi 1388 . . . . . . . 8 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5453imp 445 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1))
55 eltpg 4198 . . . . . . . . 9 (𝑍 ∈ ℝ → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5655adantr 481 . . . . . . . 8 ((𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1)) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5756adantl 482 . . . . . . 7 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → (𝑍 ∈ {-1, 0, 1} ↔ (𝑍 = -1 ∨ 𝑍 = 0 ∨ 𝑍 = 1)))
5854, 57mpbird 247 . . . . . 6 (((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) ∧ (𝑍 ∈ ℝ ∧ (-1 ≤ 𝑍𝑍 ≤ 1))) → 𝑍 ∈ {-1, 0, 1})
5958exp32 630 . . . . 5 ((𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ) → (𝑍 ∈ ℝ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1})))
6059impcom 446 . . . 4 ((𝑍 ∈ ℝ ∧ (𝑍 = 0 ∨ 𝑍 ∈ ℕ ∨ -𝑍 ∈ ℕ)) → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6123, 60sylbi 207 . . 3 (𝑍 ∈ ℤ → ((-1 ≤ 𝑍𝑍 ≤ 1) → 𝑍 ∈ {-1, 0, 1}))
6222, 61sylbid 230 . 2 (𝑍 ∈ ℤ → ((abs‘𝑍) ≤ 1 → 𝑍 ∈ {-1, 0, 1}))
6319, 62impbid2 216 1 (𝑍 ∈ ℤ → (𝑍 ∈ {-1, 0, 1} ↔ (abs‘𝑍) ≤ 1))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3o 1035   = wceq 1480  wcel 1987  {ctp 4152   class class class wbr 4613  cfv 5847  cr 9879  0cc0 9880  1c1 9881  cle 10019  -cneg 10211  cn 10964  cz 11321  abscabs 13908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-3 11024  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-seq 12742  df-exp 12801  df-cj 13773  df-re 13774  df-im 13775  df-sqrt 13909  df-abs 13910
This theorem is referenced by:  lgscl1  24945
  Copyright terms: Public domain W3C validator