![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zaddcl | Structured version Visualization version GIF version |
Description: Closure of addition of integers. (Contributed by NM, 9-May-2004.) (Proof shortened by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
zaddcl | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elz2 11432 | . 2 ⊢ (𝑀 ∈ ℤ ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦)) | |
2 | elz2 11432 | . 2 ⊢ (𝑁 ∈ ℤ ↔ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) | |
3 | reeanv 3136 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
4 | reeanv 3136 | . . . . 5 ⊢ (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) ↔ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤))) | |
5 | nnaddcl 11080 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 + 𝑧) ∈ ℕ) | |
6 | 5 | adantr 480 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑥 + 𝑧) ∈ ℕ) |
7 | nnaddcl 11080 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 + 𝑤) ∈ ℕ) | |
8 | 7 | adantl 481 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → (𝑦 + 𝑤) ∈ ℕ) |
9 | nncn 11066 | . . . . . . . . . . . 12 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
10 | nncn 11066 | . . . . . . . . . . . 12 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
11 | 9, 10 | anim12i 589 | . . . . . . . . . . 11 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
12 | nncn 11066 | . . . . . . . . . . . 12 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
13 | nncn 11066 | . . . . . . . . . . . 12 ⊢ (𝑤 ∈ ℕ → 𝑤 ∈ ℂ) | |
14 | 12, 13 | anim12i 589 | . . . . . . . . . . 11 ⊢ ((𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ) → (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) |
15 | addsub4 10362 | . . . . . . . . . . 11 ⊢ (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ (𝑦 ∈ ℂ ∧ 𝑤 ∈ ℂ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
16 | 11, 14, 15 | syl2an 493 | . . . . . . . . . 10 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 + 𝑧) − (𝑦 + 𝑤)) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) |
17 | 16 | eqcomd 2657 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) |
18 | rspceov 6732 | . . . . . . . . 9 ⊢ (((𝑥 + 𝑧) ∈ ℕ ∧ (𝑦 + 𝑤) ∈ ℕ ∧ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = ((𝑥 + 𝑧) − (𝑦 + 𝑤))) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
19 | 6, 8, 17, 18 | syl3anc 1366 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) |
20 | elz2 11432 | . . . . . . . 8 ⊢ (((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ ↔ ∃𝑢 ∈ ℕ ∃𝑣 ∈ ℕ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) = (𝑢 − 𝑣)) | |
21 | 19, 20 | sylibr 224 | . . . . . . 7 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ) |
22 | oveq12 6699 | . . . . . . . 8 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) = ((𝑥 − 𝑦) + (𝑧 − 𝑤))) | |
23 | 22 | eleq1d 2715 | . . . . . . 7 ⊢ ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → ((𝑀 + 𝑁) ∈ ℤ ↔ ((𝑥 − 𝑦) + (𝑧 − 𝑤)) ∈ ℤ)) |
24 | 21, 23 | syl5ibrcom 237 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) ∧ (𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ)) → ((𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
25 | 24 | rexlimdvva 3067 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → (∃𝑦 ∈ ℕ ∃𝑤 ∈ ℕ (𝑀 = (𝑥 − 𝑦) ∧ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
26 | 4, 25 | syl5bir 233 | . . . 4 ⊢ ((𝑥 ∈ ℕ ∧ 𝑧 ∈ ℕ) → ((∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ)) |
27 | 26 | rexlimivv 3065 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑧 ∈ ℕ (∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
28 | 3, 27 | sylbir 225 | . 2 ⊢ ((∃𝑥 ∈ ℕ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 − 𝑦) ∧ ∃𝑧 ∈ ℕ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 − 𝑤)) → (𝑀 + 𝑁) ∈ ℤ) |
29 | 1, 2, 28 | syl2anb 495 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 + 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∃wrex 2942 (class class class)co 6690 ℂcc 9972 + caddc 9977 − cmin 10304 ℕcn 11058 ℤcz 11415 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-n0 11331 df-z 11416 |
This theorem is referenced by: peano2z 11456 zsubcl 11457 zrevaddcl 11460 zdivadd 11486 zaddcld 11524 eluzaddi 11752 eluzsubi 11753 nn0pzuz 11783 fzen 12396 fzaddel 12413 fzadd2 12414 fzrev3 12444 fzrevral3 12465 elfzmlbp 12489 fzoun 12544 fzoaddel 12560 zpnn0elfzo 12580 elfzomelpfzo 12612 fzoshftral 12625 modsumfzodifsn 12783 ccatsymb 13400 ccatval21sw 13403 swrdccatin2 13533 revccat 13561 2cshw 13605 cshweqrep 13613 2cshwcshw 13617 cshwcsh2id 13620 cshco 13628 climshftlem 14349 isershft 14438 iseraltlem2 14457 fsumzcl 14510 zrisefaccl 14795 summodnegmod 15059 dvds2ln 15061 dvds2add 15062 dvdsadd 15071 dvdsadd2b 15075 addmodlteqALT 15094 3dvdsdec 15101 3dvdsdecOLD 15102 3dvds2dec 15103 3dvds2decOLD 15104 opoe 15134 opeo 15136 divalglem2 15165 ndvdsadd 15181 gcdaddmlem 15292 pythagtriplem9 15576 difsqpwdvds 15638 gzaddcl 15688 mod2xnegi 15822 cshwshashlem2 15850 cycsubgcl 17667 efgredleme 18202 zaddablx 18321 pgpfac1lem2 18520 zsubrg 19847 zringmulg 19874 expghm 19892 mulgghm2 19893 cygznlem3 19966 iaa 24125 dchrisumlem1 25223 axlowdimlem16 25882 crctcshwlkn0lem4 26761 crctcshwlkn0 26769 clwwisshclwwslemlem 26970 clwwlkccatlem 27331 ballotlemsima 30705 mzpclall 37607 mzpindd 37626 rmxyadd 37803 jm2.18 37872 inductionexd 38770 dvdsn1add 40472 stoweidlem34 40569 fourierswlem 40765 2elfz2melfz 41653 opoeALTV 41919 opeoALTV 41920 even3prm2 41953 mogoldbblem 41954 gbowgt5 41975 gboge9 41977 sbgoldbst 41991 2zrngamgm 42264 |
Copyright terms: Public domain | W3C validator |