MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zdis Structured version   Visualization version   GIF version

Theorem zdis 22841
Description: The integers are a discrete set in the topology on . (Contributed by Mario Carneiro, 19-Sep-2015.)
Hypothesis
Ref Expression
recld2.1 𝐽 = (TopOpen‘ℂfld)
Assertion
Ref Expression
zdis (𝐽t ℤ) = 𝒫 ℤ

Proof of Theorem zdis
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 16315 . 2 (𝐽t ℤ) ⊆ 𝒫 ℤ
2 elpwi 4313 . . . . . . . . 9 (𝑥 ∈ 𝒫 ℤ → 𝑥 ⊆ ℤ)
32sselda 3745 . . . . . . . 8 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℤ)
43zcnd 11696 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ℂ)
5 cnxmet 22798 . . . . . . . 8 (abs ∘ − ) ∈ (∞Met‘ℂ)
6 1rp 12050 . . . . . . . . 9 1 ∈ ℝ+
7 rpxr 12054 . . . . . . . . 9 (1 ∈ ℝ+ → 1 ∈ ℝ*)
86, 7ax-mp 5 . . . . . . . 8 1 ∈ ℝ*
9 recld2.1 . . . . . . . . . 10 𝐽 = (TopOpen‘ℂfld)
109cnfldtopn 22807 . . . . . . . . 9 𝐽 = (MetOpen‘(abs ∘ − ))
1110blopn 22527 . . . . . . . 8 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ*) → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
125, 8, 11mp3an13 1564 . . . . . . 7 (𝑦 ∈ ℂ → (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽)
139cnfldtop 22809 . . . . . . . 8 𝐽 ∈ Top
14 zex 11599 . . . . . . . 8 ℤ ∈ V
15 elrestr 16312 . . . . . . . 8 ((𝐽 ∈ Top ∧ ℤ ∈ V ∧ (𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
1613, 14, 15mp3an12 1563 . . . . . . 7 ((𝑦(ball‘(abs ∘ − ))1) ∈ 𝐽 → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
174, 12, 163syl 18 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ))
18 blcntr 22440 . . . . . . . . 9 (((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 𝑦 ∈ ℂ ∧ 1 ∈ ℝ+) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
195, 6, 18mp3an13 1564 . . . . . . . 8 (𝑦 ∈ ℂ → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
204, 19syl 17 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ (𝑦(ball‘(abs ∘ − ))1))
2120, 3elind 3942 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → 𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
224adantr 472 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℂ)
23 inss2 3978 . . . . . . . . . . . 12 ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ ℤ
24 simpr 479 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ))
2523, 24sseldi 3743 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℤ)
2625zcnd 11696 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ ℂ)
273adantr 472 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 ∈ ℤ)
2827, 25zsubcld 11700 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℤ)
2928zcnd 11696 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) ∈ ℂ)
30 eqid 2761 . . . . . . . . . . . . . . 15 (abs ∘ − ) = (abs ∘ − )
3130cnmetdval 22796 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
3222, 26, 31syl2anc 696 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) = (abs‘(𝑦𝑧)))
33 inss1 3977 . . . . . . . . . . . . . . 15 ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ (𝑦(ball‘(abs ∘ − ))1)
3433, 24sseldi 3743 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1))
35 elbl2 22417 . . . . . . . . . . . . . . . 16 ((((abs ∘ − ) ∈ (∞Met‘ℂ) ∧ 1 ∈ ℝ*) ∧ (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
365, 8, 35mpanl12 720 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3722, 26, 36syl2anc 696 . . . . . . . . . . . . . 14 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑧 ∈ (𝑦(ball‘(abs ∘ − ))1) ↔ (𝑦(abs ∘ − )𝑧) < 1))
3834, 37mpbid 222 . . . . . . . . . . . . 13 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦(abs ∘ − )𝑧) < 1)
3932, 38eqbrtrrd 4829 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) < 1)
40 nn0abscl 14272 . . . . . . . . . . . . 13 ((𝑦𝑧) ∈ ℤ → (abs‘(𝑦𝑧)) ∈ ℕ0)
41 nn0lt10b 11652 . . . . . . . . . . . . 13 ((abs‘(𝑦𝑧)) ∈ ℕ0 → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4228, 40, 413syl 18 . . . . . . . . . . . 12 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → ((abs‘(𝑦𝑧)) < 1 ↔ (abs‘(𝑦𝑧)) = 0))
4339, 42mpbid 222 . . . . . . . . . . 11 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (abs‘(𝑦𝑧)) = 0)
4429, 43abs00d 14405 . . . . . . . . . 10 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → (𝑦𝑧) = 0)
4522, 26, 44subeq0d 10613 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦 = 𝑧)
46 simplr 809 . . . . . . . . 9 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑦𝑥)
4745, 46eqeltrrd 2841 . . . . . . . 8 (((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) ∧ 𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)) → 𝑧𝑥)
4847ex 449 . . . . . . 7 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → (𝑧 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → 𝑧𝑥))
4948ssrdv 3751 . . . . . 6 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)
50 eleq2 2829 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑦𝑧𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ)))
51 sseq1 3768 . . . . . . . 8 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → (𝑧𝑥 ↔ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥))
5250, 51anbi12d 749 . . . . . . 7 (𝑧 = ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) → ((𝑦𝑧𝑧𝑥) ↔ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)))
5352rspcev 3450 . . . . . 6 ((((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∈ (𝐽t ℤ) ∧ (𝑦 ∈ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ∧ ((𝑦(ball‘(abs ∘ − ))1) ∩ ℤ) ⊆ 𝑥)) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5417, 21, 49, 53syl12anc 1475 . . . . 5 ((𝑥 ∈ 𝒫 ℤ ∧ 𝑦𝑥) → ∃𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
5554ralrimiva 3105 . . . 4 (𝑥 ∈ 𝒫 ℤ → ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
56 resttop 21187 . . . . . 6 ((𝐽 ∈ Top ∧ ℤ ∈ V) → (𝐽t ℤ) ∈ Top)
5713, 14, 56mp2an 710 . . . . 5 (𝐽t ℤ) ∈ Top
58 eltop2 21002 . . . . 5 ((𝐽t ℤ) ∈ Top → (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥)))
5957, 58ax-mp 5 . . . 4 (𝑥 ∈ (𝐽t ℤ) ↔ ∀𝑦𝑥𝑧 ∈ (𝐽t ℤ)(𝑦𝑧𝑧𝑥))
6055, 59sylibr 224 . . 3 (𝑥 ∈ 𝒫 ℤ → 𝑥 ∈ (𝐽t ℤ))
6160ssriv 3749 . 2 𝒫 ℤ ⊆ (𝐽t ℤ)
621, 61eqssi 3761 1 (𝐽t ℤ) = 𝒫 ℤ
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wcel 2140  wral 3051  wrex 3052  Vcvv 3341  cin 3715  wss 3716  𝒫 cpw 4303   class class class wbr 4805  ccom 5271  cfv 6050  (class class class)co 6815  cc 10147  0cc0 10149  1c1 10150  *cxr 10286   < clt 10287  cmin 10479  0cn0 11505  cz 11590  +crp 12046  abscabs 14194  t crest 16304  TopOpenctopn 16305  ∞Metcxmt 19954  ballcbl 19956  fldccnfld 19969  Topctop 20921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226  ax-pre-sup 10227
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-map 8028  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-fi 8485  df-sup 8516  df-inf 8517  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-div 10898  df-nn 11234  df-2 11292  df-3 11293  df-4 11294  df-5 11295  df-6 11296  df-7 11297  df-8 11298  df-9 11299  df-n0 11506  df-z 11591  df-dec 11707  df-uz 11901  df-q 12003  df-rp 12047  df-xneg 12160  df-xadd 12161  df-xmul 12162  df-fz 12541  df-seq 13017  df-exp 13076  df-cj 14059  df-re 14060  df-im 14061  df-sqrt 14195  df-abs 14196  df-struct 16082  df-ndx 16083  df-slot 16084  df-base 16086  df-plusg 16177  df-mulr 16178  df-starv 16179  df-tset 16183  df-ple 16184  df-ds 16187  df-unif 16188  df-rest 16306  df-topn 16307  df-topgen 16327  df-psmet 19961  df-xmet 19962  df-met 19963  df-bl 19964  df-mopn 19965  df-cnfld 19970  df-top 20922  df-topon 20939  df-topsp 20960  df-bases 20973  df-xms 22347  df-ms 22348
This theorem is referenced by:  sszcld  22842
  Copyright terms: Public domain W3C validator