MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregcl Structured version   Visualization version   GIF version

Theorem zfregcl 8444
Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.)
Assertion
Ref Expression
zfregcl (𝐴𝑉 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
Distinct variable group:   𝑥,𝐴,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦)

Proof of Theorem zfregcl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 eleq2 2693 . . . 4 (𝑧 = 𝐴 → (𝑥𝑧𝑥𝐴))
21exbidv 1852 . . 3 (𝑧 = 𝐴 → (∃𝑥 𝑥𝑧 ↔ ∃𝑥 𝑥𝐴))
3 eleq2 2693 . . . . . 6 (𝑧 = 𝐴 → (𝑦𝑧𝑦𝐴))
43notbid 308 . . . . 5 (𝑧 = 𝐴 → (¬ 𝑦𝑧 ↔ ¬ 𝑦𝐴))
54ralbidv 2985 . . . 4 (𝑧 = 𝐴 → (∀𝑦𝑥 ¬ 𝑦𝑧 ↔ ∀𝑦𝑥 ¬ 𝑦𝐴))
65rexeqbi1dv 3141 . . 3 (𝑧 = 𝐴 → (∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ↔ ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
72, 6imbi12d 334 . 2 (𝑧 = 𝐴 → ((∃𝑥 𝑥𝑧 → ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧) ↔ (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴)))
8 nfre1 3004 . . 3 𝑥𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧
9 axreg2 8443 . . . 4 (𝑥𝑧 → ∃𝑥(𝑥𝑧 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧)))
10 df-ral 2917 . . . . . 6 (∀𝑦𝑥 ¬ 𝑦𝑧 ↔ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧))
1110rexbii 3039 . . . . 5 (∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧 ↔ ∃𝑥𝑧𝑦(𝑦𝑥 → ¬ 𝑦𝑧))
12 df-rex 2918 . . . . 5 (∃𝑥𝑧𝑦(𝑦𝑥 → ¬ 𝑦𝑧) ↔ ∃𝑥(𝑥𝑧 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧)))
1311, 12bitr2i 265 . . . 4 (∃𝑥(𝑥𝑧 ∧ ∀𝑦(𝑦𝑥 → ¬ 𝑦𝑧)) ↔ ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧)
149, 13sylib 208 . . 3 (𝑥𝑧 → ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧)
158, 14exlimi 2089 . 2 (∃𝑥 𝑥𝑧 → ∃𝑥𝑧𝑦𝑥 ¬ 𝑦𝑧)
167, 15vtoclg 3257 1 (𝐴𝑉 → (∃𝑥 𝑥𝐴 → ∃𝑥𝐴𝑦𝑥 ¬ 𝑦𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1992  wral 2912  wrex 2913
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-ext 2606  ax-reg 8442
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ral 2917  df-rex 2918  df-v 3193
This theorem is referenced by:  zfreg  8445  elirrv  8449
  Copyright terms: Public domain W3C validator