![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > zfregfr | Structured version Visualization version GIF version |
Description: The epsilon relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
Ref | Expression |
---|---|
zfregfr | ⊢ E Fr 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfepfr 5203 | . 2 ⊢ ( E Fr 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅)) | |
2 | vex 3307 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | zfreg 8616 | . . . . 5 ⊢ ((𝑥 ∈ V ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) | |
4 | 2, 3 | mpan 708 | . . . 4 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅) |
5 | incom 3913 | . . . . . 6 ⊢ (𝑦 ∩ 𝑥) = (𝑥 ∩ 𝑦) | |
6 | 5 | eqeq1i 2729 | . . . . 5 ⊢ ((𝑦 ∩ 𝑥) = ∅ ↔ (𝑥 ∩ 𝑦) = ∅) |
7 | 6 | rexbii 3143 | . . . 4 ⊢ (∃𝑦 ∈ 𝑥 (𝑦 ∩ 𝑥) = ∅ ↔ ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
8 | 4, 7 | sylib 208 | . . 3 ⊢ (𝑥 ≠ ∅ → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
9 | 8 | adantl 473 | . 2 ⊢ ((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅) → ∃𝑦 ∈ 𝑥 (𝑥 ∩ 𝑦) = ∅) |
10 | 1, 9 | mpgbir 1839 | 1 ⊢ E Fr 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∃wrex 3015 Vcvv 3304 ∩ cin 3679 ⊆ wss 3680 ∅c0 4023 E cep 5132 Fr wfr 5174 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-sep 4889 ax-nul 4897 ax-pr 5011 ax-reg 8613 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-ral 3019 df-rex 3020 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-opab 4821 df-eprel 5133 df-fr 5177 |
This theorem is referenced by: en2lp 8623 dford2 8630 noinfep 8670 zfregs 8721 bnj852 31219 dford5reg 31913 trelpss 39078 |
Copyright terms: Public domain | W3C validator |