MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfregs2 Structured version   Visualization version   GIF version

Theorem zfregs2 9178
Description: Alternate strong form of the Axiom of Regularity. Not every element of a nonempty class contains some element of that class. (Contributed by Alan Sare, 24-Oct-2011.) (Proof shortened by Wolf Lammen, 27-Sep-2013.)
Assertion
Ref Expression
zfregs2 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zfregs2
StepHypRef Expression
1 zfregs 9177 . . . . . 6 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
2 incom 4181 . . . . . . . 8 (𝑥𝐴) = (𝐴𝑥)
32eqeq1i 2829 . . . . . . 7 ((𝑥𝐴) = ∅ ↔ (𝐴𝑥) = ∅)
43rexbii 3250 . . . . . 6 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 (𝐴𝑥) = ∅)
51, 4sylib 220 . . . . 5 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝐴𝑥) = ∅)
6 disj1 4404 . . . . . 6 ((𝐴𝑥) = ∅ ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
76rexbii 3250 . . . . 5 (∃𝑥𝐴 (𝐴𝑥) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
85, 7sylib 220 . . . 4 (𝐴 ≠ ∅ → ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
9 alinexa 1842 . . . . 5 (∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
109rexbii 3250 . . . 4 (∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
118, 10sylib 220 . . 3 (𝐴 ≠ ∅ → ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
12 dfrex2 3242 . . 3 (∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1311, 12sylib 220 . 2 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
14 notnotb 317 . . 3 (∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1514ralbii 3168 . 2 (∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1613, 15sylnibr 331 1 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398  wal 1534   = wceq 1536  wex 1779  wcel 2113  wne 3019  wral 3141  wrex 3142  cin 3938  c0 4294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-reg 9059  ax-inf2 9107
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7584  df-wrecs 7950  df-recs 8011  df-rdg 8049
This theorem is referenced by:  en3lpVD  41185
  Copyright terms: Public domain W3C validator