Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zfregs2VD Structured version   Visualization version   GIF version

Theorem zfregs2VD 38556
Description: Virtual deduction proof of zfregs2 8553. (Contributed by Alan Sare, 24-Oct-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
zfregs2VD (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem zfregs2VD
StepHypRef Expression
1 idn1 38269 . . . . . . . 8 (   𝐴 ≠ ∅   ▶   𝐴 ≠ ∅   )
2 zfregs 8552 . . . . . . . 8 (𝐴 ≠ ∅ → ∃𝑥𝐴 (𝑥𝐴) = ∅)
31, 2e1a 38331 . . . . . . 7 (   𝐴 ≠ ∅   ▶   𝑥𝐴 (𝑥𝐴) = ∅   )
4 incom 3783 . . . . . . . . 9 (𝑥𝐴) = (𝐴𝑥)
54eqeq1i 2626 . . . . . . . 8 ((𝑥𝐴) = ∅ ↔ (𝐴𝑥) = ∅)
65rexbii 3034 . . . . . . 7 (∃𝑥𝐴 (𝑥𝐴) = ∅ ↔ ∃𝑥𝐴 (𝐴𝑥) = ∅)
73, 6e1bi 38333 . . . . . 6 (   𝐴 ≠ ∅   ▶   𝑥𝐴 (𝐴𝑥) = ∅   )
8 disj1 3991 . . . . . . 7 ((𝐴𝑥) = ∅ ↔ ∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
98rexbii 3034 . . . . . 6 (∃𝑥𝐴 (𝐴𝑥) = ∅ ↔ ∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥))
107, 9e1bi 38333 . . . . 5 (   𝐴 ≠ ∅   ▶   𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥)   )
11 alinexa 1767 . . . . . 6 (∀𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1211rexbii 3034 . . . . 5 (∃𝑥𝐴𝑦(𝑦𝐴 → ¬ 𝑦𝑥) ↔ ∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1310, 12e1bi 38333 . . . 4 (   𝐴 ≠ ∅   ▶   𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥)   )
14 dfrex2 2990 . . . 4 (∃𝑥𝐴 ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1513, 14e1bi 38333 . . 3 (   𝐴 ≠ ∅   ▶    ¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥)   )
16 notnotr 125 . . . . . 6 (¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) → ∃𝑦(𝑦𝐴𝑦𝑥))
17 notnot 136 . . . . . 6 (∃𝑦(𝑦𝐴𝑦𝑥) → ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥))
1816, 17impbii 199 . . . . 5 (¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ∃𝑦(𝑦𝐴𝑦𝑥))
1918ralbii 2974 . . . 4 (∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
2019notbii 310 . . 3 (¬ ∀𝑥𝐴 ¬ ¬ ∃𝑦(𝑦𝐴𝑦𝑥) ↔ ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
2115, 20e1bi 38333 . 2 (   𝐴 ≠ ∅   ▶    ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥)   )
2221in1 38266 1 (𝐴 ≠ ∅ → ¬ ∀𝑥𝐴𝑦(𝑦𝐴𝑦𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  wne 2790  wral 2907  wrex 2908  cin 3554  c0 3891
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-reg 8441  ax-inf2 8482
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-vd1 38265
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator