Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zindbi Structured version   Visualization version   GIF version

Theorem zindbi 36988
Description: Inductively transfer a property to the integers if it holds for zero and passes between adjacent integers in either direction. (Contributed by Stefan O'Rear, 1-Oct-2014.)
Hypotheses
Ref Expression
zindbi.1 (𝑦 ∈ ℤ → (𝜓𝜒))
zindbi.2 (𝑥 = 𝑦 → (𝜑𝜓))
zindbi.3 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
zindbi.4 (𝑥 = 0 → (𝜑𝜃))
zindbi.5 (𝑥 = 𝐴 → (𝜑𝜏))
Assertion
Ref Expression
zindbi (𝐴 ∈ ℤ → (𝜃𝜏))
Distinct variable groups:   𝜑,𝑦   𝑥,𝐴,𝑦   𝜓,𝑥   𝜒,𝑥   𝜃,𝑥   𝜏,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)

Proof of Theorem zindbi
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 c0ex 9978 . . . 4 0 ∈ V
2 zindbi.4 . . . 4 (𝑥 = 0 → (𝜑𝜃))
31, 2sbcie 3452 . . 3 ([0 / 𝑥]𝜑𝜃)
4 0z 11332 . . . . 5 0 ∈ ℤ
5 eleq1 2686 . . . . . . . . . 10 (𝑦 = 0 → (𝑦 ∈ ℤ ↔ 0 ∈ ℤ))
6 breq1 4616 . . . . . . . . . 10 (𝑦 = 0 → (𝑦𝑏 ↔ 0 ≤ 𝑏))
75, 63anbi13d 1398 . . . . . . . . 9 (𝑦 = 0 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏)))
8 dfsbcq 3419 . . . . . . . . . 10 (𝑦 = 0 → ([𝑦 / 𝑥]𝜑[0 / 𝑥]𝜑))
98bibi1d 333 . . . . . . . . 9 (𝑦 = 0 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
107, 9imbi12d 334 . . . . . . . 8 (𝑦 = 0 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
11 eleq1 2686 . . . . . . . . . 10 (𝑏 = 𝐴 → (𝑏 ∈ ℤ ↔ 𝐴 ∈ ℤ))
12 breq2 4617 . . . . . . . . . 10 (𝑏 = 𝐴 → (0 ≤ 𝑏 ↔ 0 ≤ 𝐴))
1311, 123anbi23d 1399 . . . . . . . . 9 (𝑏 = 𝐴 → ((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) ↔ (0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴)))
14 dfsbcq 3419 . . . . . . . . . 10 (𝑏 = 𝐴 → ([𝑏 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
1514bibi2d 332 . . . . . . . . 9 (𝑏 = 𝐴 → (([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
1613, 15imbi12d 334 . . . . . . . 8 (𝑏 = 𝐴 → (((0 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 0 ≤ 𝑏) → ([0 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))))
17 dfsbcq 3419 . . . . . . . . . 10 (𝑎 = 𝑦 → ([𝑎 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
1817bibi2d 332 . . . . . . . . 9 (𝑎 = 𝑦 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑)))
19 dfsbcq 3419 . . . . . . . . . 10 (𝑎 = 𝑏 → ([𝑎 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2019bibi2d 332 . . . . . . . . 9 (𝑎 = 𝑏 → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
21 dfsbcq 3419 . . . . . . . . . 10 (𝑎 = (𝑏 + 1) → ([𝑎 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
2221bibi2d 332 . . . . . . . . 9 (𝑎 = (𝑏 + 1) → (([𝑦 / 𝑥]𝜑[𝑎 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
23 biidd 252 . . . . . . . . 9 (𝑦 ∈ ℤ → ([𝑦 / 𝑥]𝜑[𝑦 / 𝑥]𝜑))
24 vex 3189 . . . . . . . . . . . . . . . 16 𝑦 ∈ V
25 zindbi.2 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → (𝜑𝜓))
2624, 25sbcie 3452 . . . . . . . . . . . . . . 15 ([𝑦 / 𝑥]𝜑𝜓)
27 dfsbcq 3419 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
2826, 27syl5bbr 274 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜓[𝑏 / 𝑥]𝜑))
29 ovex 6632 . . . . . . . . . . . . . . . 16 (𝑦 + 1) ∈ V
30 zindbi.3 . . . . . . . . . . . . . . . 16 (𝑥 = (𝑦 + 1) → (𝜑𝜒))
3129, 30sbcie 3452 . . . . . . . . . . . . . . 15 ([(𝑦 + 1) / 𝑥]𝜑𝜒)
32 oveq1 6611 . . . . . . . . . . . . . . . 16 (𝑦 = 𝑏 → (𝑦 + 1) = (𝑏 + 1))
3332sbceq1d 3422 . . . . . . . . . . . . . . 15 (𝑦 = 𝑏 → ([(𝑦 + 1) / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3431, 33syl5bbr 274 . . . . . . . . . . . . . 14 (𝑦 = 𝑏 → (𝜒[(𝑏 + 1) / 𝑥]𝜑))
3528, 34bibi12d 335 . . . . . . . . . . . . 13 (𝑦 = 𝑏 → ((𝜓𝜒) ↔ ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
36 zindbi.1 . . . . . . . . . . . . 13 (𝑦 ∈ ℤ → (𝜓𝜒))
3735, 36vtoclga 3258 . . . . . . . . . . . 12 (𝑏 ∈ ℤ → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
38373ad2ant2 1081 . . . . . . . . . . 11 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑏 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑))
3938bibi2d 332 . . . . . . . . . 10 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4039biimpd 219 . . . . . . . . 9 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) → ([𝑦 / 𝑥]𝜑[(𝑏 + 1) / 𝑥]𝜑)))
4118, 20, 22, 20, 23, 40uzind 11413 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))
4210, 16, 41vtocl2g 3256 . . . . . . 7 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
43423adant3 1079 . . . . . 6 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑)))
4443pm2.43i 52 . . . . 5 ((0 ∈ ℤ ∧ 𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
454, 44mp3an1 1408 . . . 4 ((𝐴 ∈ ℤ ∧ 0 ≤ 𝐴) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
46 eleq1 2686 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦 ∈ ℤ ↔ 𝐴 ∈ ℤ))
47 breq1 4616 . . . . . . . . . . 11 (𝑦 = 𝐴 → (𝑦𝑏𝐴𝑏))
4846, 473anbi13d 1398 . . . . . . . . . 10 (𝑦 = 𝐴 → ((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) ↔ (𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏)))
49 dfsbcq 3419 . . . . . . . . . . 11 (𝑦 = 𝐴 → ([𝑦 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
5049bibi1d 333 . . . . . . . . . 10 (𝑦 = 𝐴 → (([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)))
5148, 50imbi12d 334 . . . . . . . . 9 (𝑦 = 𝐴 → (((𝑦 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝑦𝑏) → ([𝑦 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑))))
52 eleq1 2686 . . . . . . . . . . 11 (𝑏 = 0 → (𝑏 ∈ ℤ ↔ 0 ∈ ℤ))
53 breq2 4617 . . . . . . . . . . 11 (𝑏 = 0 → (𝐴𝑏𝐴 ≤ 0))
5452, 533anbi23d 1399 . . . . . . . . . 10 (𝑏 = 0 → ((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) ↔ (𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0)))
55 dfsbcq 3419 . . . . . . . . . . 11 (𝑏 = 0 → ([𝑏 / 𝑥]𝜑[0 / 𝑥]𝜑))
5655bibi2d 332 . . . . . . . . . 10 (𝑏 = 0 → (([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑) ↔ ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
5754, 56imbi12d 334 . . . . . . . . 9 (𝑏 = 0 → (((𝐴 ∈ ℤ ∧ 𝑏 ∈ ℤ ∧ 𝐴𝑏) → ([𝐴 / 𝑥]𝜑[𝑏 / 𝑥]𝜑)) ↔ ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))))
5851, 57, 41vtocl2g 3256 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
59583adant3 1079 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑)))
6059pm2.43i 52 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
614, 60mp3an2 1409 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([𝐴 / 𝑥]𝜑[0 / 𝑥]𝜑))
6261bicomd 213 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐴 ≤ 0) → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
63 0re 9984 . . . . 5 0 ∈ ℝ
64 zre 11325 . . . . 5 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
65 letric 10081 . . . . 5 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 ≤ 𝐴𝐴 ≤ 0))
6663, 64, 65sylancr 694 . . . 4 (𝐴 ∈ ℤ → (0 ≤ 𝐴𝐴 ≤ 0))
6745, 62, 66mpjaodan 826 . . 3 (𝐴 ∈ ℤ → ([0 / 𝑥]𝜑[𝐴 / 𝑥]𝜑))
683, 67syl5bbr 274 . 2 (𝐴 ∈ ℤ → (𝜃[𝐴 / 𝑥]𝜑))
69 zindbi.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜏))
7069sbcieg 3450 . 2 (𝐴 ∈ ℤ → ([𝐴 / 𝑥]𝜑𝜏))
7168, 70bitrd 268 1 (𝐴 ∈ ℤ → (𝜃𝜏))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  [wsbc 3417   class class class wbr 4613  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883  cle 10019  cz 11321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322
This theorem is referenced by:  jm2.25  37043
  Copyright terms: Public domain W3C validator