MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zindd Structured version   Visualization version   GIF version

Theorem zindd 11307
Description: Principle of Mathematical Induction on all integers, deduction version. The first five hypotheses give the substitutions; the last three are the basis, the induction, and the extension to negative numbers. (Contributed by Paul Chapman, 17-Apr-2009.) (Proof shortened by Mario Carneiro, 4-Jan-2017.)
Hypotheses
Ref Expression
zindd.1 (𝑥 = 0 → (𝜑𝜓))
zindd.2 (𝑥 = 𝑦 → (𝜑𝜒))
zindd.3 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
zindd.4 (𝑥 = -𝑦 → (𝜑𝜃))
zindd.5 (𝑥 = 𝐴 → (𝜑𝜂))
zindd.6 (𝜁𝜓)
zindd.7 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
zindd.8 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
Assertion
Ref Expression
zindd (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Distinct variable groups:   𝑥,𝐴   𝜒,𝑥   𝜂,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥   𝑥,𝑦,𝜁
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem zindd
StepHypRef Expression
1 znegcl 11242 . . . . . . 7 (𝑦 ∈ ℤ → -𝑦 ∈ ℤ)
2 elznn0nn 11221 . . . . . . 7 (-𝑦 ∈ ℤ ↔ (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
31, 2sylib 206 . . . . . 6 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)))
4 simpr 475 . . . . . . 7 ((-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ) → --𝑦 ∈ ℕ)
54orim2i 538 . . . . . 6 ((-𝑦 ∈ ℕ0 ∨ (-𝑦 ∈ ℝ ∧ --𝑦 ∈ ℕ)) → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
63, 5syl 17 . . . . 5 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ))
7 zcn 11212 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
87negnegd 10231 . . . . . . 7 (𝑦 ∈ ℤ → --𝑦 = 𝑦)
98eleq1d 2668 . . . . . 6 (𝑦 ∈ ℤ → (--𝑦 ∈ ℕ ↔ 𝑦 ∈ ℕ))
109orbi2d 733 . . . . 5 (𝑦 ∈ ℤ → ((-𝑦 ∈ ℕ0 ∨ --𝑦 ∈ ℕ) ↔ (-𝑦 ∈ ℕ0𝑦 ∈ ℕ)))
116, 10mpbid 220 . . . 4 (𝑦 ∈ ℤ → (-𝑦 ∈ ℕ0𝑦 ∈ ℕ))
12 zindd.1 . . . . . . . 8 (𝑥 = 0 → (𝜑𝜓))
1312imbi2d 328 . . . . . . 7 (𝑥 = 0 → ((𝜁𝜑) ↔ (𝜁𝜓)))
14 zindd.2 . . . . . . . 8 (𝑥 = 𝑦 → (𝜑𝜒))
1514imbi2d 328 . . . . . . 7 (𝑥 = 𝑦 → ((𝜁𝜑) ↔ (𝜁𝜒)))
16 zindd.3 . . . . . . . 8 (𝑥 = (𝑦 + 1) → (𝜑𝜏))
1716imbi2d 328 . . . . . . 7 (𝑥 = (𝑦 + 1) → ((𝜁𝜑) ↔ (𝜁𝜏)))
18 zindd.4 . . . . . . . 8 (𝑥 = -𝑦 → (𝜑𝜃))
1918imbi2d 328 . . . . . . 7 (𝑥 = -𝑦 → ((𝜁𝜑) ↔ (𝜁𝜃)))
20 zindd.6 . . . . . . 7 (𝜁𝜓)
21 zindd.7 . . . . . . . . 9 (𝜁 → (𝑦 ∈ ℕ0 → (𝜒𝜏)))
2221com12 32 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁 → (𝜒𝜏)))
2322a2d 29 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝜁𝜒) → (𝜁𝜏)))
2413, 15, 17, 19, 20, 23nn0ind 11301 . . . . . 6 (-𝑦 ∈ ℕ0 → (𝜁𝜃))
2524com12 32 . . . . 5 (𝜁 → (-𝑦 ∈ ℕ0𝜃))
26 nnnn0 11143 . . . . . . . 8 (𝑦 ∈ ℕ → 𝑦 ∈ ℕ0)
2713, 15, 17, 15, 20, 23nn0ind 11301 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝜁𝜒))
2826, 27syl 17 . . . . . . 7 (𝑦 ∈ ℕ → (𝜁𝜒))
2928com12 32 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → 𝜒))
30 zindd.8 . . . . . 6 (𝜁 → (𝑦 ∈ ℕ → (𝜒𝜃)))
3129, 30mpdd 41 . . . . 5 (𝜁 → (𝑦 ∈ ℕ → 𝜃))
3225, 31jaod 393 . . . 4 (𝜁 → ((-𝑦 ∈ ℕ0𝑦 ∈ ℕ) → 𝜃))
3311, 32syl5 33 . . 3 (𝜁 → (𝑦 ∈ ℤ → 𝜃))
3433ralrimiv 2944 . 2 (𝜁 → ∀𝑦 ∈ ℤ 𝜃)
35 znegcl 11242 . . . . 5 (𝑥 ∈ ℤ → -𝑥 ∈ ℤ)
36 negeq 10121 . . . . . . . . 9 (𝑦 = -𝑥 → -𝑦 = --𝑥)
37 zcn 11212 . . . . . . . . . 10 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3837negnegd 10231 . . . . . . . . 9 (𝑥 ∈ ℤ → --𝑥 = 𝑥)
3936, 38sylan9eqr 2662 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → -𝑦 = 𝑥)
4039eqcomd 2612 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → 𝑥 = -𝑦)
4140, 18syl 17 . . . . . 6 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜑𝜃))
4241bicomd 211 . . . . 5 ((𝑥 ∈ ℤ ∧ 𝑦 = -𝑥) → (𝜃𝜑))
4335, 42rspcdv 3281 . . . 4 (𝑥 ∈ ℤ → (∀𝑦 ∈ ℤ 𝜃𝜑))
4443com12 32 . . 3 (∀𝑦 ∈ ℤ 𝜃 → (𝑥 ∈ ℤ → 𝜑))
4544ralrimiv 2944 . 2 (∀𝑦 ∈ ℤ 𝜃 → ∀𝑥 ∈ ℤ 𝜑)
46 zindd.5 . . 3 (𝑥 = 𝐴 → (𝜑𝜂))
4746rspccv 3275 . 2 (∀𝑥 ∈ ℤ 𝜑 → (𝐴 ∈ ℤ → 𝜂))
4834, 45, 473syl 18 1 (𝜁 → (𝐴 ∈ ℤ → 𝜂))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wral 2892  (class class class)co 6524  cr 9788  0cc0 9789  1c1 9790   + caddc 9792  -cneg 10115  cn 10864  0cn0 11136  cz 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2229  ax-ext 2586  ax-sep 4700  ax-nul 4709  ax-pow 4761  ax-pr 4825  ax-un 6821  ax-resscn 9846  ax-1cn 9847  ax-icn 9848  ax-addcl 9849  ax-addrcl 9850  ax-mulcl 9851  ax-mulrcl 9852  ax-mulcom 9853  ax-addass 9854  ax-mulass 9855  ax-distr 9856  ax-i2m1 9857  ax-1ne0 9858  ax-1rid 9859  ax-rnegex 9860  ax-rrecex 9861  ax-cnre 9862  ax-pre-lttri 9863  ax-pre-lttrn 9864  ax-pre-ltadd 9865  ax-pre-mulgt0 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2458  df-mo 2459  df-clab 2593  df-cleq 2599  df-clel 2602  df-nfc 2736  df-ne 2778  df-nel 2779  df-ral 2897  df-rex 2898  df-reu 2899  df-rab 2901  df-v 3171  df-sbc 3399  df-csb 3496  df-dif 3539  df-un 3541  df-in 3543  df-ss 3550  df-pss 3552  df-nul 3871  df-if 4033  df-pw 4106  df-sn 4122  df-pr 4124  df-tp 4126  df-op 4128  df-uni 4364  df-iun 4448  df-br 4575  df-opab 4635  df-mpt 4636  df-tr 4672  df-eprel 4936  df-id 4940  df-po 4946  df-so 4947  df-fr 4984  df-we 4986  df-xp 5031  df-rel 5032  df-cnv 5033  df-co 5034  df-dm 5035  df-rn 5036  df-res 5037  df-ima 5038  df-pred 5580  df-ord 5626  df-on 5627  df-lim 5628  df-suc 5629  df-iota 5751  df-fun 5789  df-fn 5790  df-f 5791  df-f1 5792  df-fo 5793  df-f1o 5794  df-fv 5795  df-riota 6486  df-ov 6527  df-oprab 6528  df-mpt2 6529  df-om 6932  df-wrecs 7268  df-recs 7329  df-rdg 7367  df-er 7603  df-en 7816  df-dom 7817  df-sdom 7818  df-pnf 9929  df-mnf 9930  df-xr 9931  df-ltxr 9932  df-le 9933  df-sub 10116  df-neg 10117  df-nn 10865  df-n0 11137  df-z 11208
This theorem is referenced by:  efexp  14613  pcexp  15345  mulgaddcom  17330  mulginvcom  17331  mulgneg2  17341  mulgass2  18367  cnfldmulg  19540  clmmulg  22637  xrsmulgzz  28812
  Copyright terms: Public domain W3C validator