Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzequap Structured version   Visualization version   GIF version

Theorem zlmodzxzequap 42074
Description: Example of an equation within the -module ℤ × ℤ (see example in [Roman] p. 112 for a linearly dependent set), written as a sum. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxzldep.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzldep.a 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
zlmodzxzldep.b 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
zlmodzxzequap.o 0 = {⟨0, 0⟩, ⟨1, 0⟩}
zlmodzxzequap.m + = (+g𝑍)
zlmodzxzequap.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzequap ((2 𝐴) + (-3 𝐵)) = 0

Proof of Theorem zlmodzxzequap
StepHypRef Expression
1 3cn 10945 . . . . . . 7 3 ∈ ℂ
2 2cn 10941 . . . . . . 7 2 ∈ ℂ
31, 2mulneg1i 10328 . . . . . 6 (-3 · 2) = -(3 · 2)
43oveq2i 6538 . . . . 5 ((2 · 3) + (-3 · 2)) = ((2 · 3) + -(3 · 2))
52, 1mulcli 9902 . . . . . 6 (2 · 3) ∈ ℂ
61, 2mulcli 9902 . . . . . 6 (3 · 2) ∈ ℂ
7 negsub 10181 . . . . . . 7 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = ((2 · 3) − (3 · 2)))
81, 2mulcomi 9903 . . . . . . . . 9 (3 · 2) = (2 · 3)
98oveq2i 6538 . . . . . . . 8 ((2 · 3) − (3 · 2)) = ((2 · 3) − (2 · 3))
105subidi 10204 . . . . . . . 8 ((2 · 3) − (2 · 3)) = 0
119, 10eqtri 2632 . . . . . . 7 ((2 · 3) − (3 · 2)) = 0
127, 11syl6eq 2660 . . . . . 6 (((2 · 3) ∈ ℂ ∧ (3 · 2) ∈ ℂ) → ((2 · 3) + -(3 · 2)) = 0)
135, 6, 12mp2an 704 . . . . 5 ((2 · 3) + -(3 · 2)) = 0
144, 13eqtri 2632 . . . 4 ((2 · 3) + (-3 · 2)) = 0
1514opeq2i 4339 . . 3 ⟨0, ((2 · 3) + (-3 · 2))⟩ = ⟨0, 0⟩
16 4cn 10948 . . . . . . 7 4 ∈ ℂ
171, 16mulneg1i 10328 . . . . . 6 (-3 · 4) = -(3 · 4)
1817oveq2i 6538 . . . . 5 ((2 · 6) + (-3 · 4)) = ((2 · 6) + -(3 · 4))
19 6cn 10952 . . . . . . . 8 6 ∈ ℂ
202, 19mulcli 9902 . . . . . . 7 (2 · 6) ∈ ℂ
211, 16mulcli 9902 . . . . . . 7 (3 · 4) ∈ ℂ
2220, 21negsubi 10211 . . . . . 6 ((2 · 6) + -(3 · 4)) = ((2 · 6) − (3 · 4))
23 2t6m3t4e0 41911 . . . . . 6 ((2 · 6) − (3 · 4)) = 0
2422, 23eqtri 2632 . . . . 5 ((2 · 6) + -(3 · 4)) = 0
2518, 24eqtri 2632 . . . 4 ((2 · 6) + (-3 · 4)) = 0
2625opeq2i 4339 . . 3 ⟨1, ((2 · 6) + (-3 · 4))⟩ = ⟨1, 0⟩
2715, 26preq12i 4217 . 2 {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩} = {⟨0, 0⟩, ⟨1, 0⟩}
28 zlmodzxzldep.a . . . . . 6 𝐴 = {⟨0, 3⟩, ⟨1, 6⟩}
2928oveq2i 6538 . . . . 5 (2 𝐴) = (2 {⟨0, 3⟩, ⟨1, 6⟩})
30 2z 11245 . . . . . 6 2 ∈ ℤ
31 3z 11246 . . . . . 6 3 ∈ ℤ
32 6nn 11039 . . . . . . 7 6 ∈ ℕ
3332nnzi 11237 . . . . . 6 6 ∈ ℤ
34 zlmodzxzldep.z . . . . . . 7 𝑍 = (ℤring freeLMod {0, 1})
35 zlmodzxzequap.t . . . . . . 7 = ( ·𝑠𝑍)
3634, 35zlmodzxzscm 41920 . . . . . 6 ((2 ∈ ℤ ∧ 3 ∈ ℤ ∧ 6 ∈ ℤ) → (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩})
3730, 31, 33, 36mp3an 1416 . . . . 5 (2 {⟨0, 3⟩, ⟨1, 6⟩}) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
3829, 37eqtri 2632 . . . 4 (2 𝐴) = {⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩}
39 zlmodzxzldep.b . . . . . 6 𝐵 = {⟨0, 2⟩, ⟨1, 4⟩}
4039oveq2i 6538 . . . . 5 (-3 𝐵) = (-3 {⟨0, 2⟩, ⟨1, 4⟩})
41 znegcl 11248 . . . . . . 7 (3 ∈ ℤ → -3 ∈ ℤ)
4231, 41ax-mp 5 . . . . . 6 -3 ∈ ℤ
43 4z 11247 . . . . . 6 4 ∈ ℤ
4434, 35zlmodzxzscm 41920 . . . . . 6 ((-3 ∈ ℤ ∧ 2 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
4542, 30, 43, 44mp3an 1416 . . . . 5 (-3 {⟨0, 2⟩, ⟨1, 4⟩}) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4640, 45eqtri 2632 . . . 4 (-3 𝐵) = {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}
4738, 46oveq12i 6539 . . 3 ((2 𝐴) + (-3 𝐵)) = ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩})
48 zmulcl 11262 . . . . 5 ((2 ∈ ℤ ∧ 3 ∈ ℤ) → (2 · 3) ∈ ℤ)
4930, 31, 48mp2an 704 . . . 4 (2 · 3) ∈ ℤ
50 zmulcl 11262 . . . . 5 ((-3 ∈ ℤ ∧ 2 ∈ ℤ) → (-3 · 2) ∈ ℤ)
5142, 30, 50mp2an 704 . . . 4 (-3 · 2) ∈ ℤ
52 zmulcl 11262 . . . . 5 ((2 ∈ ℤ ∧ 6 ∈ ℤ) → (2 · 6) ∈ ℤ)
5330, 33, 52mp2an 704 . . . 4 (2 · 6) ∈ ℤ
54 zmulcl 11262 . . . . 5 ((-3 ∈ ℤ ∧ 4 ∈ ℤ) → (-3 · 4) ∈ ℤ)
5542, 43, 54mp2an 704 . . . 4 (-3 · 4) ∈ ℤ
56 zlmodzxzequap.m . . . . 5 + = (+g𝑍)
5734, 56zlmodzxzadd 41921 . . . 4 ((((2 · 3) ∈ ℤ ∧ (-3 · 2) ∈ ℤ) ∧ ((2 · 6) ∈ ℤ ∧ (-3 · 4) ∈ ℤ)) → ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩})
5849, 51, 53, 55, 57mp4an 705 . . 3 ({⟨0, (2 · 3)⟩, ⟨1, (2 · 6)⟩} + {⟨0, (-3 · 2)⟩, ⟨1, (-3 · 4)⟩}) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
5947, 58eqtri 2632 . 2 ((2 𝐴) + (-3 𝐵)) = {⟨0, ((2 · 3) + (-3 · 2))⟩, ⟨1, ((2 · 6) + (-3 · 4))⟩}
60 zlmodzxzequap.o . 2 0 = {⟨0, 0⟩, ⟨1, 0⟩}
6127, 59, 603eqtr4i 2642 1 ((2 𝐴) + (-3 𝐵)) = 0
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1475  wcel 1977  {cpr 4127  cop 4131  cfv 5790  (class class class)co 6527  cc 9791  0cc0 9793  1c1 9794   + caddc 9796   · cmul 9798  cmin 10118  -cneg 10119  2c2 10920  3c3 10921  4c4 10922  6c6 10924  cz 11213  +gcplusg 15717   ·𝑠 cvsca 15721  ringzring 19586   freeLMod cfrlm 19857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1713  ax-4 1728  ax-5 1827  ax-6 1875  ax-7 1922  ax-8 1979  ax-9 1986  ax-10 2006  ax-11 2021  ax-12 2034  ax-13 2234  ax-ext 2590  ax-rep 4694  ax-sep 4704  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-addf 9872  ax-mulf 9873
This theorem depends on definitions:  df-bi 196  df-or 384  df-an 385  df-3or 1032  df-3an 1033  df-tru 1478  df-ex 1696  df-nf 1701  df-sb 1868  df-eu 2462  df-mo 2463  df-clab 2597  df-cleq 2603  df-clel 2606  df-nfc 2740  df-ne 2782  df-nel 2783  df-ral 2901  df-rex 2902  df-reu 2903  df-rmo 2904  df-rab 2905  df-v 3175  df-sbc 3403  df-csb 3500  df-dif 3543  df-un 3545  df-in 3547  df-ss 3554  df-pss 3556  df-nul 3875  df-if 4037  df-pw 4110  df-sn 4126  df-pr 4128  df-tp 4130  df-op 4132  df-uni 4368  df-int 4406  df-iun 4452  df-br 4579  df-opab 4639  df-mpt 4640  df-tr 4676  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-of 6773  df-om 6936  df-1st 7037  df-2nd 7038  df-supp 7161  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-ixp 7773  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-fsupp 8137  df-sup 8209  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-2 10929  df-3 10930  df-4 10931  df-5 10932  df-6 10933  df-7 10934  df-8 10935  df-9 10936  df-n0 11143  df-z 11214  df-dec 11329  df-uz 11523  df-fz 12156  df-struct 15646  df-ndx 15647  df-slot 15648  df-base 15649  df-sets 15650  df-ress 15651  df-plusg 15730  df-mulr 15731  df-starv 15732  df-sca 15733  df-vsca 15734  df-ip 15735  df-tset 15736  df-ple 15737  df-ds 15740  df-unif 15741  df-hom 15742  df-cco 15743  df-0g 15874  df-prds 15880  df-pws 15882  df-mgm 17014  df-sgrp 17056  df-mnd 17067  df-grp 17197  df-minusg 17198  df-subg 17363  df-cmn 17967  df-mgp 18262  df-ur 18274  df-ring 18321  df-cring 18322  df-subrg 18550  df-sra 18942  df-rgmod 18943  df-cnfld 19517  df-zring 19587  df-dsmm 19843  df-frlm 19858
This theorem is referenced by:  zlmodzxzldeplem3  42077
  Copyright terms: Public domain W3C validator