![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > zlmodzxzldeplem1 | Structured version Visualization version GIF version |
Description: Lemma 1 for zlmodzxzldep 42618. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.) |
Ref | Expression |
---|---|
zlmodzxzldep.z | ⊢ 𝑍 = (ℤring freeLMod {0, 1}) |
zlmodzxzldep.a | ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} |
zlmodzxzldep.b | ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} |
zlmodzxzldeplem.f | ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} |
Ref | Expression |
---|---|
zlmodzxzldeplem1 | ⊢ 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zex 11424 | . 2 ⊢ ℤ ∈ V | |
2 | prex 4939 | . 2 ⊢ {𝐴, 𝐵} ∈ V | |
3 | zlmodzxzldep.a | . . . . . . . 8 ⊢ 𝐴 = {〈0, 3〉, 〈1, 6〉} | |
4 | prex 4939 | . . . . . . . 8 ⊢ {〈0, 3〉, 〈1, 6〉} ∈ V | |
5 | 3, 4 | eqeltri 2726 | . . . . . . 7 ⊢ 𝐴 ∈ V |
6 | zlmodzxzldep.b | . . . . . . . 8 ⊢ 𝐵 = {〈0, 2〉, 〈1, 4〉} | |
7 | prex 4939 | . . . . . . . 8 ⊢ {〈0, 2〉, 〈1, 4〉} ∈ V | |
8 | 6, 7 | eqeltri 2726 | . . . . . . 7 ⊢ 𝐵 ∈ V |
9 | 5, 8 | pm3.2i 470 | . . . . . 6 ⊢ (𝐴 ∈ V ∧ 𝐵 ∈ V) |
10 | 9 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
11 | 2z 11447 | . . . . . . 7 ⊢ 2 ∈ ℤ | |
12 | 3nn0 11348 | . . . . . . . 8 ⊢ 3 ∈ ℕ0 | |
13 | 12 | nn0negzi 11454 | . . . . . . 7 ⊢ -3 ∈ ℤ |
14 | 11, 13 | pm3.2i 470 | . . . . . 6 ⊢ (2 ∈ ℤ ∧ -3 ∈ ℤ) |
15 | 14 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (2 ∈ ℤ ∧ -3 ∈ ℤ)) |
16 | zlmodzxzldep.z | . . . . . . 7 ⊢ 𝑍 = (ℤring freeLMod {0, 1}) | |
17 | 16, 3, 6 | zlmodzxzldeplem 42612 | . . . . . 6 ⊢ 𝐴 ≠ 𝐵 |
18 | 17 | a1i 11 | . . . . 5 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐴 ≠ 𝐵) |
19 | fprg 6462 | . . . . . 6 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴 ≠ 𝐵) → {〈𝐴, 2〉, 〈𝐵, -3〉}:{𝐴, 𝐵}⟶{2, -3}) | |
20 | zlmodzxzldeplem.f | . . . . . . 7 ⊢ 𝐹 = {〈𝐴, 2〉, 〈𝐵, -3〉} | |
21 | 20 | feq1i 6074 | . . . . . 6 ⊢ (𝐹:{𝐴, 𝐵}⟶{2, -3} ↔ {〈𝐴, 2〉, 〈𝐵, -3〉}:{𝐴, 𝐵}⟶{2, -3}) |
22 | 19, 21 | sylibr 224 | . . . . 5 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (2 ∈ ℤ ∧ -3 ∈ ℤ) ∧ 𝐴 ≠ 𝐵) → 𝐹:{𝐴, 𝐵}⟶{2, -3}) |
23 | 10, 15, 18, 22 | syl3anc 1366 | . . . 4 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶{2, -3}) |
24 | prssi 4385 | . . . . 5 ⊢ ((2 ∈ ℤ ∧ -3 ∈ ℤ) → {2, -3} ⊆ ℤ) | |
25 | 11, 13, 24 | mp2an 708 | . . . 4 ⊢ {2, -3} ⊆ ℤ |
26 | fss 6094 | . . . 4 ⊢ ((𝐹:{𝐴, 𝐵}⟶{2, -3} ∧ {2, -3} ⊆ ℤ) → 𝐹:{𝐴, 𝐵}⟶ℤ) | |
27 | 23, 25, 26 | sylancl 695 | . . 3 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹:{𝐴, 𝐵}⟶ℤ) |
28 | elmapg 7912 | . . 3 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → (𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) ↔ 𝐹:{𝐴, 𝐵}⟶ℤ)) | |
29 | 27, 28 | mpbird 247 | . 2 ⊢ ((ℤ ∈ V ∧ {𝐴, 𝐵} ∈ V) → 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵})) |
30 | 1, 2, 29 | mp2an 708 | 1 ⊢ 𝐹 ∈ (ℤ ↑𝑚 {𝐴, 𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 ∧ w3a 1054 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ⊆ wss 3607 {cpr 4212 〈cop 4216 ⟶wf 5922 (class class class)co 6690 ↑𝑚 cmap 7899 0cc0 9974 1c1 9975 -cneg 10305 2c2 11108 3c3 11109 4c4 11110 6c6 11112 ℤcz 11415 ℤringzring 19866 freeLMod cfrlm 20138 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 |
This theorem is referenced by: zlmodzxzldeplem2 42615 zlmodzxzldeplem3 42616 zlmodzxzldep 42618 |
Copyright terms: Public domain | W3C validator |