Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzscm Structured version   Visualization version   GIF version

Theorem zlmodzxzscm 41906
 Description: The scalar multiplication of the ℤ-module ℤ × ℤ. (Contributed by AV, 20-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzscm.t = ( ·𝑠𝑍)
Assertion
Ref Expression
zlmodzxzscm ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})

Proof of Theorem zlmodzxzscm
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 prex 4907 . . . 4 {0, 1} ∈ V
21a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {0, 1} ∈ V)
3 fnconstg 6091 . . . 4 (𝐴 ∈ ℤ → ({0, 1} × {𝐴}) Fn {0, 1})
433ad2ant1 1081 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({0, 1} × {𝐴}) Fn {0, 1})
5 c0ex 10031 . . . . . 6 0 ∈ V
6 1ex 10032 . . . . . 6 1 ∈ V
75, 6pm3.2i 471 . . . . 5 (0 ∈ V ∧ 1 ∈ V)
87a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (0 ∈ V ∧ 1 ∈ V))
9 3simpc 1059 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ))
10 0ne1 11085 . . . . 5 0 ≠ 1
1110a1i 11 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ≠ 1)
12 fnprg 5945 . . . 4 (((0 ∈ V ∧ 1 ∈ V) ∧ (𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 0 ≠ 1) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
138, 9, 11, 12syl3anc 1325 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} Fn {0, 1})
142, 4, 13offvalfv 41892 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴}) ∘𝑓 (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
15 zlmodzxz.z . . 3 𝑍 = (ℤring freeLMod {0, 1})
16 eqid 2621 . . 3 (Base‘𝑍) = (Base‘𝑍)
17 eqid 2621 . . 3 (Base‘ℤring) = (Base‘ℤring)
18 simp1 1060 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ ℤ)
19 zringbas 19818 . . . 4 ℤ = (Base‘ℤring)
2018, 19syl6eleq 2710 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐴 ∈ (Base‘ℤring))
2115zlmodzxzel 41904 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
22213adant1 1078 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
23 zlmodzxzscm.t . . 3 = ( ·𝑠𝑍)
24 eqid 2621 . . 3 (.r‘ℤring) = (.r‘ℤring)
2515, 16, 17, 2, 20, 22, 23, 24frlmvscafval 20103 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = (({0, 1} × {𝐴}) ∘𝑓 (.r‘ℤring){⟨0, 𝐵⟩, ⟨1, 𝐶⟩}))
265a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 0 ∈ V)
276a1i 11 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 1 ∈ V)
28 ovexd 6677 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐵) ∈ V)
29 ovexd 6677 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 · 𝐶) ∈ V)
30 fveq2 6189 . . . . 5 (𝑥 = 0 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘0))
31 fveq2 6189 . . . . 5 (𝑥 = 0 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0))
3230, 31oveq12d 6665 . . . 4 (𝑥 = 0 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)))
33 zringmulr 19821 . . . . . . 7 · = (.r‘ℤring)
3433eqcomi 2630 . . . . . 6 (.r‘ℤring) = ·
3534a1i 11 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (.r‘ℤring) = · )
365prid1 4295 . . . . . 6 0 ∈ {0, 1}
37 fvconst2g 6464 . . . . . 6 ((𝐴 ∈ ℤ ∧ 0 ∈ {0, 1}) → (({0, 1} × {𝐴})‘0) = 𝐴)
3818, 36, 37sylancl 694 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘0) = 𝐴)
39 simp2 1061 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐵 ∈ ℤ)
40 fvpr1g 6455 . . . . . 6 ((0 ∈ V ∧ 𝐵 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4126, 39, 11, 40syl3anc 1325 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0) = 𝐵)
4235, 38, 41oveq123d 6668 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘0)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘0)) = (𝐴 · 𝐵))
4332, 42sylan9eqr 2677 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 0) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐵))
44 fveq2 6189 . . . . 5 (𝑥 = 1 → (({0, 1} × {𝐴})‘𝑥) = (({0, 1} × {𝐴})‘1))
45 fveq2 6189 . . . . 5 (𝑥 = 1 → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥) = ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1))
4644, 45oveq12d 6665 . . . 4 (𝑥 = 1 → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)))
476prid2 4296 . . . . . 6 1 ∈ {0, 1}
48 fvconst2g 6464 . . . . . 6 ((𝐴 ∈ ℤ ∧ 1 ∈ {0, 1}) → (({0, 1} × {𝐴})‘1) = 𝐴)
4918, 47, 48sylancl 694 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (({0, 1} × {𝐴})‘1) = 𝐴)
50 simp3 1062 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → 𝐶 ∈ ℤ)
51 fvpr2g 6456 . . . . . 6 ((1 ∈ V ∧ 𝐶 ∈ ℤ ∧ 0 ≠ 1) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5227, 50, 11, 51syl3anc 1325 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1) = 𝐶)
5335, 49, 52oveq123d 6668 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((({0, 1} × {𝐴})‘1)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘1)) = (𝐴 · 𝐶))
5446, 53sylan9eqr 2677 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) ∧ 𝑥 = 1) → ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥)) = (𝐴 · 𝐶))
5526, 27, 28, 29, 43, 54fmptpr 6435 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩} = (𝑥 ∈ {0, 1} ↦ ((({0, 1} × {𝐴})‘𝑥)(.r‘ℤring)({⟨0, 𝐵⟩, ⟨1, 𝐶⟩}‘𝑥))))
5614, 25, 553eqtr4d 2665 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ) → (𝐴 {⟨0, 𝐵⟩, ⟨1, 𝐶⟩}) = {⟨0, (𝐴 · 𝐵)⟩, ⟨1, (𝐴 · 𝐶)⟩})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1037   = wceq 1482   ∈ wcel 1989   ≠ wne 2793  Vcvv 3198  {csn 4175  {cpr 4177  ⟨cop 4181   ↦ cmpt 4727   × cxp 5110   Fn wfn 5881  ‘cfv 5886  (class class class)co 6647   ∘𝑓 cof 6892  0cc0 9933  1c1 9934   · cmul 9938  ℤcz 11374  Basecbs 15851  .rcmulr 15936   ·𝑠 cvsca 15939  ℤringzring 19812   freeLMod cfrlm 20084 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010  ax-addf 10012  ax-mulf 10013 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-of 6894  df-om 7063  df-1st 7165  df-2nd 7166  df-supp 7293  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-map 7856  df-ixp 7906  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-fsupp 8273  df-sup 8345  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-starv 15950  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-unif 15959  df-hom 15960  df-cco 15961  df-0g 16096  df-prds 16102  df-pws 16104  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-subg 17585  df-cmn 18189  df-mgp 18484  df-ur 18496  df-ring 18543  df-cring 18544  df-subrg 18772  df-sra 19166  df-rgmod 19167  df-cnfld 19741  df-zring 19813  df-dsmm 20070  df-frlm 20085 This theorem is referenced by:  zlmodzxzequa  42056  zlmodzxznm  42057  zlmodzxzequap  42059
 Copyright terms: Public domain W3C validator