Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  zlmodzxzsubm Structured version   Visualization version   GIF version

Theorem zlmodzxzsubm 41451
Description: The subtraction of the -module ℤ × ℤ expressed as addition. (Contributed by AV, 24-May-2019.) (Revised by AV, 10-Jun-2019.)
Hypotheses
Ref Expression
zlmodzxz.z 𝑍 = (ℤring freeLMod {0, 1})
zlmodzxzsub.m = (-g𝑍)
Assertion
Ref Expression
zlmodzxzsubm (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} (+g𝑍)(-1( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩})))

Proof of Theorem zlmodzxzsubm
StepHypRef Expression
1 zlmodzxz.z . . . . . 6 𝑍 = (ℤring freeLMod {0, 1})
21zlmodzxzlmod 41446 . . . . 5 (𝑍 ∈ LMod ∧ ℤring = (Scalar‘𝑍))
32simpli 474 . . . 4 𝑍 ∈ LMod
43a1i 11 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → 𝑍 ∈ LMod)
51zlmodzxzel 41447 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐶 ∈ ℤ) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
65ad2ant2r 782 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍))
71zlmodzxzel 41447 . . . 4 ((𝐵 ∈ ℤ ∧ 𝐷 ∈ ℤ) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
87ad2ant2l 781 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍))
9 eqid 2621 . . . 4 (Base‘𝑍) = (Base‘𝑍)
10 eqid 2621 . . . 4 (+g𝑍) = (+g𝑍)
11 zlmodzxzsub.m . . . 4 = (-g𝑍)
122simpri 478 . . . 4 ring = (Scalar‘𝑍)
13 eqid 2621 . . . 4 ( ·𝑠𝑍) = ( ·𝑠𝑍)
14 eqid 2621 . . . 4 (invg‘ℤring) = (invg‘ℤring)
15 zring1 19761 . . . 4 1 = (1r‘ℤring)
169, 10, 11, 12, 13, 14, 15lmodvsubval2 18850 . . 3 ((𝑍 ∈ LMod ∧ {⟨0, 𝐴⟩, ⟨1, 𝐶⟩} ∈ (Base‘𝑍) ∧ {⟨0, 𝐵⟩, ⟨1, 𝐷⟩} ∈ (Base‘𝑍)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} (+g𝑍)(((invg‘ℤring)‘1)( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩})))
174, 6, 8, 16syl3anc 1323 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} (+g𝑍)(((invg‘ℤring)‘1)( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩})))
18 1z 11359 . . . . . 6 1 ∈ ℤ
19 zringinvg 19767 . . . . . 6 (1 ∈ ℤ → -1 = ((invg‘ℤring)‘1))
2018, 19mp1i 13 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → -1 = ((invg‘ℤring)‘1))
2120eqcomd 2627 . . . 4 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ((invg‘ℤring)‘1) = -1)
2221oveq1d 6625 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → (((invg‘ℤring)‘1)( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = (-1( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩}))
2322oveq2d 6626 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} (+g𝑍)(((invg‘ℤring)‘1)( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩})) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} (+g𝑍)(-1( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩})))
2417, 23eqtrd 2655 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℤ ∧ 𝐷 ∈ ℤ)) → ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} {⟨0, 𝐵⟩, ⟨1, 𝐷⟩}) = ({⟨0, 𝐴⟩, ⟨1, 𝐶⟩} (+g𝑍)(-1( ·𝑠𝑍){⟨0, 𝐵⟩, ⟨1, 𝐷⟩})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  {cpr 4155  cop 4159  cfv 5852  (class class class)co 6610  0cc0 9888  1c1 9889  -cneg 10219  cz 11329  Basecbs 15792  +gcplusg 15873  Scalarcsca 15876   ·𝑠 cvsca 15877  invgcminusg 17355  -gcsg 17356  LModclmod 18795  ringzring 19750   freeLMod cfrlm 20022
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-sup 8300  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-fz 12277  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-0g 16034  df-prds 16040  df-pws 16042  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-grp 17357  df-minusg 17358  df-sbg 17359  df-subg 17523  df-cmn 18127  df-mgp 18422  df-ur 18434  df-ring 18481  df-cring 18482  df-subrg 18710  df-lmod 18797  df-lss 18865  df-sra 19104  df-rgmod 19105  df-cnfld 19679  df-zring 19751  df-dsmm 20008  df-frlm 20023
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator